
Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

111. Queues

Intro Data Structures & SE

Queues

Slides
1. Table of Contents
2. Queue Definition
3. Queue Application: Op Sys
4. Multi-Level Feedback Queuing Sys
5. Op Sys Processes
6. Dynamic Priorities
7. Sequential Queue Implementations
8. Circular Queue
9. Circular Queue: Interface
10. Circular Queue: Implementation
11. Linked-Queue: Implementation
12. Linked-Queue: Implementation (cont)
13. Drop-Out Stack
14. DOS Implementations
15. Deque

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

211. Queues

Intro Data Structures & SE

Queue Definition

Description
– Restricted (two-tailed) list structure
– Dynamic FIFO Storage Structure

† Size and Contents can change during execution of program
† First in First Out
† Elements are inserted (enqueue) into the rear and retrieved (dequeue)
from front.

– Single Type Element (not generic)
– Real life: Any Ticket Line.

Operations
– Queue () ;

† set queue to be empty
– bool Empty () ;

† check if queue is empty
– bool Full () ;

† check if queue is full
– Enqueue (const Item& item) ;

† Insert item into the queue
– Item Dequeue () ;

† Remove & return the item
at the front of the queue

In OutI1I2I3

FrontRear

Insertion Order:
I1, I2, I3

Queue Que ;
Que.Enqueue(I1) ;
Que.Enqueue(I2) ;
Que.Enqueue(I3) ;

Queue Que ;
Que.Enqueue(I1) ;
Que.Enqueue(I2) ;
Que.Enqueue(I3) ;

Some implementations define:
Item Front() ;

Returns first item in the queue,
but does not remove it.

Dequeue() ;
In this case removes the first
item in the queue, but does not
return it.

Some implementations define:
Item Front() ;

Returns first item in the queue,
but does not remove it.

Dequeue() ;
In this case removes the first
item in the queue, but does not
return it.

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

311. Queues

Intro Data Structures & SE

Queue Application: Op Sys

Operating System (Fictional)
– A (fictional) batch operating system queues jobs waiting to execute

according to the following scheme:

– Users of the system have relative priorities according to their ID
number :

users 100-199 highest
users 200-299 next highest
users 300-399

• • •

users 800-899 next to lowest
users 900-999 lowest (jobs run only when no other jobs

are present in the system)

– Within each priority group, the jobs execute in the same order that
they arrive in the system. (FIFO)

– If there is a highest-priority job queued, it will execute before any
other job; if not, if there is a next-to-highest-priority job queued, it
will run before any lower-priority jobs, and so on. That is, a lower-
priority job will only run when there are no higher-priority jobs
waiting.

– The system has an array of queues
typedef Queue mlfQueSys [MAXLEVELS];
mlfQueSys jobs;

– to hold the queues for the various priority levels.

Batch Operating Sys
executes each job to
completion before
executing other jobs.

Problem taken from: PASCAL Plus Data Structures,
4th ed., N. Dale and S.C. Lilly, D.C. Heath Pub., ©1995

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

411. Queues

Intro Data Structures & SE

Multi-Level Feedback
Queueing Sys

Queue Item type :
class Item { // PCB (Process Control Block)

private:

int userid, processid, priority;

state processState; // running ready blocked

tablePtr procMem; // pointers process's
memory

// segment/page table

rscrPtr rscrs; // pointers to allocated

// resources

regPtr regs; // register save area

public:

// public function prototypes . . .

};

Users Queues

D
is

pa
tc

he
r

•••

300-399

•••400-499

•••500-599

•••600-699

•••100-199

•••200-299

•••700-799

•••800-899
•••900-999

Jo
b

Sc
he

du
le

r

Queue Topology

Queue
Topology

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

511. Queues

Intro Data Structures & SE

Op Sys Processes
Op Sys Functions

– Any of the standard queue procedures (Enque, Deque, etc.) may be
called to accomplish the following:

– Write a procedure ADDJOB (Dispatcher) that receives a user ID
and a token (representing the job to be executed) and adds the
token to an appropriate queue for the user's priority level.

– Write a procedure GETNEXTJOB (Job Scheduler) that returns the
token for the next highest-priority job queued for execution.

– The system is going down for maintenance. All jobs waiting for
execution will be purged from the job queues. However, this is a
very user friendly system that notifies users when their jobs are
being killed, so they will know to resubmit the jobs later.

PROCEDURE Notify (Token, Messageid)
// takes care of notificaton.

– Write a procedure CLEANUPJOBS that sends message 7 to all the
users with queued jobs. (Call Procedure NOTIFY). Of course, send
messages to the highest-priority users first.

Time-Sharing
– Jobs in each queue are given time slices of the CPU
– Assume PCB contains pcb.time, i.e. num of time slices
– Problem : Prevent large jobs from “hogging” the CPU
– Solution : code a function adjustPriority (called by the op sys

when necessary) to move “hogging” jobs down to next lower
priority queue.

– Hogging Job - program that has received more than some HOG
(system constant) time slices

– Only jobs from current highest queue need be moved to free up the
system.

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

611. Queues

Intro Data Structures & SE

Dynamic Priorities

void adjustpriority (mlfQueSys& jobs , bool& err) {

Item proc;
int q = 0;
bool found = false;
Queue temp ;

// find current highest que with jobs
while ((!found) && (q < MAXLEVELS-1))

if (!jobs[q].Empty())
found = true;

else ++q;

err = !found; //sys empty or all jobs in lowest Que
if (!err) { // adjust

while (! jobs[q].Empty()) {
proc = jobs[q].Dequeue();
if (proc.GetTime() > HOG)
jobs[q+1].Enqueue(proc);
else temp.Enqueue(proc);

}//while
while (! temp.Empty()) {

// restore small jobs
proc = temp.Dequeue();
jobs[q].Enqueue(proc);
}//while

}//if
}// adjustpriority

‘Hogging’ jobs whose priority has been changed
dynamically by insertion in next lower level queue
are still considered ‘large’ jobs (i.e. their number of
time slices received has NOT been reset).

‘Hogging’ jobs whose priority has been changed
dynamically by insertion in next lower level queue
are still considered ‘large’ jobs (i.e. their number of
time slices received has NOT been reset).

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

711. Queues

Intro Data Structures & SE

Sequential Queue
Implementations
Linear Array

– Front or Rear must be fixed at one end of the array
– Enqueing or Dequeing requires inefficient array shifting.

Circular Array
– Code operations to force array indicies to ‘wrap-around’

† front = (front + 1) % MAXQUE ;
† rear = (rear + 1) % MAXQUE ;

– front and rear indicies
delimit the bounds of the
queue contents

– Enqueue
† Move the que.rear pointer 1

position clockwise & write
the element in that position.

– Dequeue
† Return element at que.front

and move que.front one
position clockwise

– Count (queue size) is stored
and maintained or boolean full
status flag maintained.

que.front

que.rear

MAXQUE-1
0

1

queue

que.front
que.rear

One-element QueueOne-element Queue

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

811. Queues

Intro Data Structures & SE

Circular Queue

Efficient Implementation
– Empty or Full Queue?

Assume queue has 1 element.

Dequeue the element.
Where are the indicies?

Fill up the queue.
Where are the indicies?

– Solution
† design implementation to ensure that different states of

the queue are represented distinctly
† Eliminates need to maintain a queue size count.
† Front refers to the position preceding actual front element
† full queue:

‡ contains (max - 1) elements.

– Tradeoff:
† one memory location saves

processing (maintaining queue
size count)

– Distinct States
† Full Queue:

(que.rear + 1) % MAXQUE == que.front

† Empty Queue:
(que.rear == que.front)

† One-element Queue:
(que.front + 1) % MAXQUE == que.rear

que.front
que.rear

MAXQUE-1
0

1

que.front

que.rear

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

911. Queues

Intro Data Structures & SE

Circular Queue: Interface

Array Representation
– Queue.h

Considerations
– Requires establishment of conventions for the unique

representation of queue states.
– Consistency of conventions must be maintained between all

operation functions
– Deque’ed items will remain in the queue (array) until they

are overwritten

const int MAXQUE = 100;
//typedef arbitrary Itemtype;
#include "Item.h"

class Queue {
private:
int Front;
int Rear;
Item Items[MAXQUE];

public:
Queue();
bool Empty();
bool Full();
void Enqueue (const Item& item);
Item Dequeue ();

};

No count
variable
required.

No count
variable
required.

Queue Interface
does NOT change,
unaffected by
underlying
representation.

Queue Interface
does NOT change,
unaffected by
underlying
representation.

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

1011. Queues

Intro Data Structures & SE

Circular Queue:
Implementation
Queue.cpp

#include "Queue.h"

Queue::Queue() {
Front = 0;
Rear = 0;

}

bool Queue::Empty () {
return (Front == Rear);

}

bool Queue::Full () {
return (((Rear+1) % MAXQUE) == Front);

}

void Queue::Enqueue(const Item& item) {
Rear = (Rear + 1) % MAXQUE;
Items[Rear] = item;

}

Item Queue::Dequeue() {
Front = (Front + 1) % MAXQUE;
return(Items[Front]);

}

Alternatively can
also be initialized
to MAXQUE - 1

Alternatively can
also be initialized
to MAXQUE - 1

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

1111. Queues

Intro Data Structures & SE

Linked Que Implementation

Linked-List Representation
– Queue is a structure containing two pointers:

† front:points to the head of the list
† rear: points to the end of the list (last node)

– Enque operates upon the rear pointer, inserting after the last node.
– Deque operates upon the front pointer, always removing the head of

the list.
– Empty queue is represented by NULL front & rear pointers

List Class Implementation
– Queue.h

No change should be made to Queue
interface to achieve abstraction and
information hiding.

No change should be made to Queue
interface to achieve abstraction and
information hiding.

#include "LinkList.h"
//typedef arbitrary Item
#include "Item.h"

class Queue {
private:

LinkList que;
public:

//Queue(); //LinkList constructor
bool Empty();
bool Full();
void Enqueue (const Item& Item);
Item Dequeue ();

};

Class aggregrationClass aggregration

(implement using
Class List operations)

(implement using
Class List operations)

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

1211. Queues

Intro Data Structures & SE

Linked Que Implementation

Queue.cpp

#include "Queue.h"

bool Queue::Empty () {
return (que.isEmpty());

}

bool Queue::Full () {
Item* newNode= new(nothrow) Item;
if (newNode == NULL)

return true;
delete newNode;
return false;

}

void Queue::Enqueue(const Item& item) {
que.gotoTail();
que.Insert(item);

}

Item Queue::Dequeue() {
Item temp;

que.gotoHead();
temp = que.getCurrentData();
que.DeleteCurrentNode();
return(temp);

}

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

1311. Queues

Intro Data Structures & SE

Drop-Out Stack (dos)

“Bottomless” Stack
– Variation of a regular stack.

† No fullstack operation (i.e. a dos can never become full).

– “Drop-Out” Stack of size N has following behavior:
Let the integers 1 , 2 ... be the first elements PUSHed onto the stack
respectively.
After the Nth integer element is PUSH’ed, integer 1 is at the “bottom” of the
stack, with 2 immediately above it.
After the N+1 integer is PUSHed, 1 Drops-Out of the bottom and integer 2
is now at the bottom of the stack.

– Note: any element that Drops-Out of the stack never reenters the
stack automatically from the bottom due to POPs being performed.

)push(dos,

dos
max size = 5 drop-out

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

1411. Queues

Intro Data Structures & SE

DOS: Implementations

Representations
– Linear Array

† Bottom is fixed at first index.
‡ Problem : inefficient down shifting of elements required

when Drop-Outs must occur.

– Circular Array
† Elements PUSHed when Dropping-Out occurs simply store over

elements at bottom.
– Problem: when are all the

elements POP’ed off?

† Solution #1:
Size counter stores number
of stack elements.
Requires extra processing
& checking.

† Solution #2:
Bottom index.
Empty Stack ?

when top = bottom.
Drop-Outs ?

When PUSHing the
bottom index is
moved forward.

maxdos-1

0
1

dos.top

2

dos.size
11

maxdos-1

1

2

dos.top dos.bot

0

Analogous to circular queue
implementation.

Analogous to circular queue
implementation.

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

1511. Queues

Intro Data Structures & SE

Deque

“Double-Ended” Queue
– variation of a regular queue.
– elements can be added and removed at either the rear or front of the

queue, but nowhere else in the queue.
– operations:

Deque(), Empty(), Full(), EnqRear(), EnqFront(), DeqFront(), DeqRear()
– generalization of both a stack and a queue.

Design
– Linear Array

† Front or Rear is fixed at first or last index.
† Inefficient down shifting of elements required when Enqueuing or

Dequeuing to the fixed end.
– Circular Array

† Front & Rear move both forward & backward around the array.

0
1

2

MaxDeQue-1

DeQueue.front

DeQueue.rear

EnqFront
Deqfront

DeqRear

EnqRear
•

•
•

•

•
• • •

•

