Copying Objects

Slides

Table of Contents
Assignment of Objects
Dynamic Content
Shallow Copying

Deep Copying

this Pointer

... Improved Deep Copy
Passing an Object
Passing Objects

Passing Objects by Vaue
Passing Objects by Value (cont)
Copy Constructors
Initialization

Moral

Classvs. Proc. ADT

Intro Data Structures & SE

8. Copying Objects

1

Assignment of Objects 8. Copying Objects 2

A default assignment operation is provided for objects (just as for
struct variables):

cl ass Conpl ex {
private:
doubl e Real, | mag;
publ i c:
Compl ex();
Conpl ex(doubl e Real Part, double InmagPart);
. ..
doubl e Modul us();

}i

Conmpl ex A(4.3, 2.9);
Conpl ex B;

B = A /1l copies the data nenbers of Ainto B

The default assignment operation simply copies values of the data
members from the “source’ object into the corresponding data
members of the “target” object.

Thisis satisfactory
INn many cases.

A

However, if an object contains a pointer to dynamically allocated
memory, the result of the default assignment operation is usually
not desirable...

Intro Data Structures & SE

Dynamic Content 8. Copying Objects 3

Consider theLi nkLi st class discussed earlier:

#i ncl ude

cl ass Integer {

private:
I nt Dat a;
publi c:

| nt eger (i nt newbDat a=0) ;
bool operator==(const Integer& anltem const;
bool operator<(const Integer& anltem) const;

}
typedef Integer Item

Li nkLi st nylLi st;
for (int ldx = 4; ldx < -1; Idx--) {

| nt eger newl nteger (1dx);
nmyLi st . Prefi xNode(new nt eger) ;

These nodes are not
data members of the
object myList.

Intro Data Structures & SE

==

Shallow Copying

8. Copying Objects 4

Now, suppose we declare another LinkList object and assign the

original oneto it:

Li nkLi st anot her Li st ;

anot her Li st = nyLi st;

Here's what we get:

myLi st

anot her Li st does

not get a new copy of
the linked list nodes.

It just gets a copy of
the pointers from
nmyLi st .

So both Li nkLi st
obj ects share the same
dynamic data.

anot her Li st

Intro Data Structures & SE

9
A

Thisisamost certainly
NOT what was desired
when the code above was
written.

Thisis known as making
a“shallow copy” of the
source object.

Deep Copying 8. Copying Objects 5

When an object contains a pointer to dynamically allocated data,
we generally will want the assignment operation to create a
compl ete duplicate of the “source” object. Thisis known as
making a “deep copy”.

In order to do this, you must provide your own implementation of
the assignment operator for the class in question, and take care of
the “deep” copy logic yourself. Here' s afirst attempt:

Li nkLi st & Li nkLi st:: operator=(const LinkList& otherList) {

Head = NULL; /1l don’t copy pointers
Tai | = NULL;
Curr = NULL;

Li nkNode* nyCurr = otherlList.Head; //copy head ptr

while (myCurr !'= NULL) {
|tem xferData = nyCurr->get Dat a();
I f (Head == NULL) //add first node
Pref i xNode(xf er Dat a) ;
el se // Append to end of |i st
| nsert (xferData);
Advance() ;
myCurr = nyCurr->get Next ();
} //while

o)

return (*this); 16'

} |
|

This contains some flaws: Al

= the“target” object may already beinitialized and this doesn’t
attempt to delete its list, so memory will be “orphaned”

= fixing that will potentially cause a problem if an object is
assigned to itself.

Intro Data Structures & SE

this Pointer 8. Copying Objects 6

Specia Object Pointer: “t hi s”

Every object contains alanguage supplied implicitly defined
hidden pointer to itself termed “t hi s” which contains the address
of the object.

Used when an object needs to refer to itself as whole, not just
individual data members).

The“t hi s” pointer is not explicitly part of the object,
(i. e not counted inthe si zeof () the object).

Every member function receivesthet hi s pointer as an
implicit parameter

It is used implicitly to access an object’s members whenever a
member is directly referenced.

It can however be used explicitly to indirectly access an
object’ s members.

Thetype of the“t hi s” pointer is dependent upon the type of
the object to which it refers.

» For anon-const member function of class X, the type of
the“t hi s” pointer is:
X * const this; //aconstpointer
I/t hi s isnever explicitly defined or assigned

» For aconst member function of class X, the type of the
“t hi s” pointer is:
const X * const this;
//a const pointer to a const object

Intro Data Structures & SE

...Improved Deep Copy 8. Copying Objects 7

Here's a somewhat improved version:

Li nkLi st & Li nkLi st:: operator=(const LinkList& otherList) {

if (this !'= &otherList) { /'l self-assignnment??
t hi s->~Li nkLi st (); /]l delete target’s |ist
Head = Tail = Curr = NULL; // don’t copy pointers

Li nkNode* myCurr = otherlList.Head; //copy head ptr

while (myCurr !'= NULL) {
|tem xferData = nyCurr->getData();
If (Head == NULL) //add first node
Pref i xNode(xf er Dat a) ;
el se // Append to end of I|ist
| nsert (xferData);
Advance() ;
myCurr = nyCurr->get Next ();
Y/ while
YT
return (*this);

} ™

A more precise copy would involve
positioning Curr analogously.

By returning a reference to an object, a member function allows
chaining of the the operations. E.g.,
Li nkLi st anot herLi st, anot her Copy;
anot her Copy = anot herLi st = nylLi st;

Add = overload function to the LinkList class.

Intro Data Structures & SE

Passing an Object

When an object is used as an actual parameter in afunction call,

8. Copying Objects

the distinction between shallow and deep copying can cause
seemingly mysterious problems.

8

voi d PrintList(LinkList& nyList, ostrean& Qut) {

}

| t em next Val ue;
int Count = O;

Qut << << endl;
nmyLi st . got oHead() ;
I f (nmyList.isEnmpty()) {

Qut << << endl ;

return;

}

while (nyList.inList()) {
next Val ue = nyLi st. get Current Dat a() ;
Qut << setw(3) << ++Count <<
<< next Val ue. get Nane() << endl;
nyLi st . Advance() ;

}
Qut << endl :

This function will print the Name fields of alist of objects,
(assuming the Bl uesManType implementation or something
similar for ItemType).

Note that the Li nkLi st parameter myLi st isnot passed by
constant reference. That would eliminate risking any modification

of the object by the called function. Why is constant reference not

used here?

Intro Data Structures & SE

Passing Objects 8. Copying Objects 9

In the previous example, the object parameter cannot be passed by
constant reference because the called function does change the
object (although not the content of thelist itself).

Theobject nyLi st ispassed by reference, which would allow the
called function to modify the actual Li nkLi st object used in the
cal.

The advantage of passing by reference is that it eliminates the time
and space required to make a copy of the object (if the object were
passed by value).

However, since constant reference is not an option here, it would
be preferable to eliminate the chance of an unintended
modification of thelist and passthe Li nkLi st parameter by

value.
However, that will cause a new problem.

When an object is passed by value, the actual parameter must be
copied to the formal parameter (which isalocal variablein the
called function).

This copying is managed by using a special constructor, called a
copy constructor. By default thisinvolves a shallow copy. That
meansthat if the actual parameter involves dynamically allocated
data, then the formal parameter will share that data rather than
have its own copy of it.

Intro Data Structures & SE

Passing Objects by Value 8. Copying Objects 10

In this case:

/'l use pass by val ue:

voi d PrintList(LinkList myList, ostrean& Qut) {
/] same 1 nplenentation

}

void main() {
Li nkLi st Bi gLi st ;
/1l initialize BigList wth sone data nodes

PrintList(BigList, cout); [l print BigList

Bi gLi st

nmyLi st

What happenswhen Pri nt Li st () iscalled?

First, alocal variable myLi st is created and the data members of
Bi gLi st arecopiedinto nyLi st , resulting in the situation
shown above.

Intro Data Structures & SE

Passing Objects by Value 8. Copying Objects 11

AsPrintLi st () executes, theCurr pointer inmyLi st is
modified and nodes are printed:

void PrintList(LinkList nyList, ostream& Qut) {

/| operations on nyList, which is |ocal

}

When Pri nt Li st () terminates, the lifetime of nyLi st comes
to an end and its destructor is automatically invoked:

Destructing nyLi st
causes the deallocation
of thelist of nodesto
which myLi st . Head

points.

Bi gLi st

nmyLi st

But of course, that’ sthe same list that Bi gLi st hascreated. So,
when execution returnsto mai n() , Bi gLi st will havelost its
list, but Bi gLi st . Head will still point to that deallocated @
memory.

/

Havoc will ensue. JAY

Intro Data Structures & SE

Copy Constructors 8. Copying Objects 12

There are solutions to this problem:
» aways pass objects by reference
» force adeep copy to be made when pass by value is used

Thefirst option isundesirable since it raises the risk of undesired
modification of the actual parameter. The second option can be
achieved by providing a user-defined copy constructor for the
class, and implementing a deep copy. When a user-defined copy
constructor is available, it is used when an actual parameter is
copied to aformal parameter.

Li nkLi st:: Li nkLi st (const LinkLi st& Source) {
Head = Tail = Curr = NULL;
Li nkNode* nyCurr = Source.Head; // copy |ist

while (myCurr !'= NULL) {
Item xferData = nyCurr->getData();
I f (Head == NULL) //add first node
Prefi xNode(xf er Dat a) ;
el se // Append to end of |ist
| nsert (xferData);
Advance();
myCurr = nyCurr->get Next () ;
}
/'l add code to logically equate the
/'l curr pointers for an exact copy

}

The copy constructor takes an object of the relevant type as a
parameter (constant reference must be used). Implement a deep
copy in the body of the copy constructor and the problem
described on the previous slides is solved.

Intro Data Structures & SE

Initialization 8. Copying Objects 13

When an object is declared, it may be initialized with the value of
an existing object (of the same type):

void main() {
Li nkLi st aList; // default construction
[/ Now t hrow sone nodes i nto aLi st
/1l .

Li nkLi st anotherList = aList; // initialization

Technically initialization is different from assignment since here
we know that the “target” object does not yet store any defined
values.

Although it looks like an assignment, the initialization shown here
is accomplished by the copy constructor.

If there is no user-defined copy constructor, the default (shallow)
copy constructor manages the initialization.

If there is a user-defined copy constructor, it will manage the
copying as the user wishes.

Copy constructor also execute when an object is returned by a
function as the function return value:

object x = getQoject(list);

Intro Data Structures & SE

Moral 8. Copying Objects 14

When implementing a class that involves dynamic allocation, if
there is any chance that:

* objects of that type will be passed as parameters, or
 objects of that type will be used ininitializations

then your implementation should include a copy constructor that
provides a proper deep copy.

If there is any chance that: g
 objects of that type will be used in assignments "

then your implementation should include an overloaded '

assignment operator that provides a proper deep copy. '

-

This provides relatively cheap insurance against some very nasty
behavior.

Intro Data Structures & SE

Class vs. Proc. ADT 8. Copying Objects 15

| mplementation Comparison

TheList Class ADT achieves complete
encapsulation/information hiding for the type.
* Function operation interfaces are ssimplified asa
result of the reduced parameter lists, (i.e. the object is
passed implicitly).

A List Procedural ADT only achieves a certain level of
encapsulation/information hiding .

Due to more localized code, the List Class implements a
more reusable ADT.
o Automatic initialization by constructors eliminates
error code checking inthe ClassADT.

Modifications and extensionsto the List Class ADT are
easier to make.

Higher-level types based on the List Class ADT can be
built more readily.

Intro Data Structures & SE

