Pointers

Slides

Table of Contents

Dynamic Variables

Memory and Addresses
Pointer Declaration

Pointer References

Pointer References (cont)
Pointer Manipulation
Pointers and Type
Addressing: Direct & Indirect
Record Pointers

Pointer Expressions
Dynamic Storage
Allocating Arrays
Allocating Arrays (cont)
Resizing an Array
Allocation Failure
Allocation Failure (cont)
Reference Pointer Parameters
Value Pointer Parameters
const Pointer Parameters
const Pointers

const Summary

Pointer Array Arithmetic
Incrementing Pointers
Array of Structs Pointer
Pointer Incrementing Abuse
Arrays of Pointers

Dynamic Memory Problems
Reference Variables

Intro Data Structures & SE

3. Pointers

1

Dynamic Variables 3. Pointers

Static Variables
Size is fixed throughout execution
Sizeisknown at compile time
Space/memory is allocated at execution

Dynamic Variables
Created during execution
T "dynamic allocation”
No space allocated at compilation time
Size may vary
T Structures are created and destroyed during execution.
Knowledge of structure size not needed
Memory is not wasted by non-used allocated space.
Storage is required for addresses.

Example of Pointers

Assume:
Houses represent data
Addresses represent the locations of the houses.

Notice:
To get to ahouse you must have an address.
No houses can exist without addresses.
An address can exist without a house (vacant lot / NULL pointer)

Intro Data Structures & SE

Memory and Addresses 3. Pointers 3

On modern computers, memory is organized in a manner
similar to a one-dimensional array:

memory is a sequence of bytes (8 bits)

each byte is assigned a numerical address, similar to array
indexing

addresses are nonnegative integers; valid range is

determined by physical system and OS memory
management scheme

OS (should) keep track of which addresses each process
(executing program) is allowed to access, and attempts to
access addresses that are not allocated to a process should
result in intervention by the OS

OS usually reserves a block of memory starting at address
O for itsown use

addresses are usually expressed in hexadecimal (base 16),
typically indicated by use of a prefix: 0xF4240

Memory Organization

run-time stack used for statically allocated storage
heap used for dynamically allocated storage

Intro Data Structures & SE

Pointer Declaration 3. Pointers 4

Pointer Type

Simple type of variables for storing the memory addresses of
other memory locations

Pointer Variables Declarations
The asterisk ‘** character is used for pointer variable

declarations:
int* iptr; <4— recommended form
float *fptr,
fptr2; <€— not a pointer

common declaration

Iptr is a pointer to an integer
fptr isapointer to ared

int* iptrl, iptr2;

A

not a pointer

Given the declaration:

i nt* i ptrl;
I nt I ptr2;

T Declaresiptrl to be a pointer variable, but iptr2 isasimple
integer variable.

Equivalent declaration: [typedef int *intPtr;
intPtr I ptrl;

T Declare al pointer variables in separate declaration statements.

Pointer Type Definitions:

strong type declaration (preferred)

Intro Data Structures & SE

Pointer References 3. Pointers

Address Operator: & (ampersand)

Unary operator that returns the hardware memory location
address of it’s operand.

Given: I nt* I ptrl;
I nt* I ptr2
i nt numa, nunb
numa = 1;
numb = 2;
Address Assignment: iptrl = &nung;
i ptr2 = &unb;

Dereference/ Indirection Operator: * (asterisk)

unary ‘pointer’ operator that returns the memory contents at
the address contained in the pointer variable.

Pointer Output:

cout << iptrl << *iptrl << endl;
cout << iptr2 << *iptr2 << endl;

(Possible) results:

0xF4240 1
Ox3B9ACAOO 2

Intro Data Structures & SE

5

Pointer References 3. Pointers 6

NULL Pointer
Pointer constant, address 0

Named constant in the <cst ddef > include header
(<st ddef . h> old style header).

Represents the empty pointer
T points nowhere, unique pointer/address value

Symbolic/graphic representations: . /

Illegal: NEVER dereference a pointer that equals NULL

% * NULL f&”}\

M W
i

—

CodeTest.exe - Application Error x|
e The instruction at "0x0040f&1 2" referenced memory at "0x00000000", The memory could not be “read”,

Click on OF, to kerminate the program
Click on CAMCEL to debug the program

Cancel |

Intro Data Structures & SE

Pointer Manipulation 3. Pointers 7

Pointer Diagrams

Given (text/code representation) Graphic
representation
#i ncl ude <cst ddef > iptrl numa
void main() {)
Int* 1 ptrl = NULL;
I nt* Iptr2 = NULL; |ptr2 numb
int numa, nunb;
. 2
numa = 1;
nunb = 2;
}
Pointer Assignments
#1 -
ptrl = &nuna Iptrl numa
I ptr2 = &nunb; I Y |
iptr2 numb
_—.[2
iptrl numa
#2 *Iptr2 = *iptrl - 1;
iptr2 = iptrl; ’ B > 3
*Iptr2 = 3 ; \
iptrZ/numb
PR a)

No pointer accessto nunb
remains.

Intro Data Structures & SE

Pointers and Type 3. Pointers

Pointers have type:

the type of a pointer is determined by the type of target that is
specified in the pointer declaration.

NULL;
NULL;

o0 5
- — —+ =
* ok
© O
~ ~t
- =
N
I

here,i ptr1landi ptr2 arepointerstoi nt (typei nt*).

it isacompile-time error to assign a non-pointer value to a pointer:

iptr2 = *iptrl;, // error: assignint toint*

or vice versa:

Iptrl =iptr2; // error: assign int to int
Typecasts and pointers:

the assignments above would be legal if an explicit typecast were
used:

iptr2 = (int*) *iptril; /'l 1egal

typedef int* iPtr;
iptr2 = iPtr(*iptrl); /'l 1egal

*Iptrl = int(iptr2); /1 | egal

However, be very cautious with this sort of code. It rarely, if ever, makes
much sense to assign a pointer avalue that's not either another pointer, or
obtained by using the dereference operator.

Intro Data Structures & SE

8

Addressing: Direct

Direct Addressing

& Indirect

3. Pointers

9

normal variable access
non-pointer variables represent one-level of addressing

non-pointer variables are addresses to memory locations
containing data values.

compilers store variable information in a“symbol table’:

X int OxF4240
iptr OxF4241

pointer (int)

compilers replace non-pointer variables with their addresses

& fetch/store operations during code generation.

Indirect Addressing

accessing a memory location’s contents thru a pointer
pointer variables represent two-levels of addressing

pointer variables are addresses to memory locations
containing addresses .

compilers replace pointer variables with their addresses &
double fetch/store operations during code generation.

Note: indirect addressing required
to dereference pointer variable.

X
I ptr

28:
&X;

Intro Data Structures & SE

address contents
Ox F4239 ?2?7?
0xF4240 28
OxF4241 O0OxF4240
Ox F4242 ?2??

Record Pointers

Pointers to structures:

3. Pointers 10

Given; const int f3size = 20;
struct rectype {
i nt fieldl;
float field2;
char field3
3
typedef rectype *recPtr;
rectype recl = {1, 3.1415f, }s
recPtr rilptr;
riptr = &recl
Member Access

Field Access Examples:

cout << (*rilptr).fieldl
<< (*rlptr).field2
<< (*rlptr).field3;

Errors:

>

Note: parentheses are
required due to operator
precedence; without
compiler attempts to
dereference fields.

cout << *rlptr.fieldl
<< *rlptr.field2
<< *rlptr.field3;

»
m

—

Arrow Operator
Short-hand notation:
cout << rilptr->fieldl

<< rlptr->field2
<< rilptr->fields;

Intro Data Structures & SE

Note: -> is an ANSI
“C” pointer member
selection operator.
Equivalent to:

(* pointer).member

Pointer Expressions 3. Pointers 11

Arrays == Pointers
Non-indexed Array variables are considered pointersin C

Array names as pointers contain the address of the zero
element (termed the base address of the array).

Given: const int size = 20;

char nane
char *person;

equivalent person
assignments person

nane;
&nane ;<

Does not create a
copy, (ho memory
Pointer Indexing allocation)

All pointers can be indexed,

(logically meaningful only if the pointer references an

array).

Example:

per son
per son =

Logical Expressions
NULL tests: preferred check

I f (!person) //true if (person == NULL)

Equivaence Tests:
i f (person == nane) pointer types
[/true if pointers reference must_be
//the same nenory address identical

Intro Data Structures & SE

Dynamic Storage

Heap (Free Store, Free Memory)

Area of memory reserved by the compiler for allocating &
deallocating to a program during execution.

3. Pointers 12

Operations:
new type allocation malloc(# bytes)
delete pointer deallocation free pointer

With most compilers, NULL isreturned if the heap is empty.
However, see dide 3.16 for a caveat ...

Allocation

char* nane;
int* iptr;
[C++

nane = new(not hr ow) char;

iptr =
new(not hr ow)

[/initialization

nane = new char

Deallocation
[C++
del et e nanme;
name = NULL;
del et e | ptr
[/ del ete [20]
I ptr = NULL;

I nt

("A);

pointer typecastsrequired
/1l C
nane = (char *)
mal | oc(si zeof (char));

iptr = (int *)
mal | oc(20*si zeof (int));

dynamic array allocation

/Il C
free(nane);

free(iptr);

| ptr;

Pointers are undefined after
deallocation and should be set to
NULL.

Intro Data Structures & SE

Allocating Arrays 3. Pointers 13

Declaration Syntax

Int Size;
cin >> Size; /'l dynam c val ue
char* Name = new char ;// use as array dim

Int* Scores;
Scores = new int ;
Size = 4 * Size + 1; /| does NOT change array

Effect of array allocation vianew

Scor es 3F42740 Addriss I ndix
Address
returned 3F42740 0
by new 3F42744 1
value of
Seores 3F42748 2
3F4274C 3
3F42750 4
Storage
spaceis
allocated
contiguously
in memory

Intro Data Structures & SE

Allocating Arrays Cont’d 3. Pointers 14

Use like any statically-allocated array

strcpy(Nane,); [/ static size

for (int Idx = 0; Idx < Size; Size++)
Scor es = 0;
Sort Scores(Scores, Size);

Deallocation
del et e Nane;
del et e Scor es;
del ete Scores; // including dimis optiona

/!l and has no effect

Failure to explicitly del et e adynamic variable will result

in that memory NOT being returned to the system, even if
the pointer to it goes out of scope.

Thisiscaled a“memory leak” and is evidence of poor

“ program implementation.

\’
If large dynamic structures are used (or lots of little ones), a
memory leak can result in depletion of available memory.

/1 WARNI NG
del et e Nane;

/I May not release array nenory, undefined results

Intro Data Structures & SE

Resizing an Array 3. Pointers 15

Resizing adynamically-allocated array

int* newArray = new int ;

/'l copy contents of old array into new one
for (int Idx = 0; ldx < oldCapacity; |dx++)
newAr r ay = Scores ;

/'l delete old array
del et e Scor es;

/'l retarget old array pointer to new array
Scores = newArray;

/1l clean up alias
newArray = NULL;

Intro Data Structures & SE

Allocation Failure 3. Pointers 16

An invocation of operator newwill fail if the heap does not
contain enough free memory to grant the request.

Traditionally, the value NULL has been returned in that situation.
However, the C++ Standard changes the required behavior. By the
Standard, when an invocation of new fails, the value returned may
or may not be NULL; what isrequired is that an exception be
thrown. We do not cover catching and responding to exceptionsin
this course.

Fortunately, for the present, most C++ language implementations
will continue to guarantee that NULL is returned in this case.

Better still, the Standard provides away to forcea NULL return
instead of an exception throw:

const int Size = 20;
I nt* nyList = new(nothrow) int

AN

Use of this syntax will
guarantee that nyLi st will
be assigned NULL if the
allocation fails.

Intro Data Structures & SE

Allocation Failure 3. Pointers 17

The following program attempts to allocate an array, initialize it,
and then display its contents. However, the allocation will almost
certainly fail.

#i ncl ude <i ostreane
#i ncl ude <i omani p>
usi ng nanespace std;

void main() {
int Count;
int* t;
const int Size = 900000000;
int* nyList = new(nothrow) int ;

if (myList == NULL) {

cout << << endl ;
return;
}
for (t = nyList, Count = 0; Count < Size; Count++, t++)
{
} *t = Count; What if t was replaced with nmyLi st ?

for (t = nmyList, Count = 0; Count < Size; Count++, t++)

cout <<t << setw(5) << *t << endl;

Intro Data Structures & SE

Reference Pointer Parameters

3. Pointers 18

In C++, all function parameters are, by default, passed by value.
When passing a pointer as a parameter to afunction, you must

decide how to pass the pointer.

If the called function needs to modify the value of the pointer, you

must pass the pointer by reference:

/ This pointer is being passed by reference.

voi d resi zeArray(int*& Array, const int ol dSize,

const int newSize) {

Int* tenpArray = new int
Copy(tenpArray, Array, ol dSize);
del ete Array,;

Array = tenpArray, /'l nodifies VALUE of Array

tenpArray = NULL,

/lis this statenent necessary?

Array ———» 42 | 31

72

87

17

t enpArray

42 (31 (72 |87 |17 |? |?

Intro Data Structures & SE

Value Pointer Parameters 3. Pointers 19

If the called function only needs to modify the value of the target of
the pointer, you may pass the pointer by value:

void Copy(int* Target, int* Source, const int Dm {
for (int Idx = 0; Idx < D n |dx++)

Tar get = Source

Source —» 42 | 31 | 72 | 87 | 17

||

Target —— {42 |31 (72 |87 |17 |? |? |? |? |?

Copy() copiesthe target of one pointer to the target of another
pointer. Neither pointer is altered.

Thisistermed a side-effect. Considered poor practice. Better to
pass pointers by reference to indicate the change of target, (or
better still to explicitly pass the pointer by const but not the target).

voi d Copy(int* const Target,
const int* const Source,
const int Dm ;

Intro Data Structures & SE

const Pointer Parameters 3. Pointers 20

Passing a pointer by value is somewhat dangerous. As shownin
the implementation of Copy() on the previous dide, if you pass a
pointer to afunction by value, the function does have the ability to
modify the value of the target of the pointer. (The called function
recelves alocal copy of the pointer’svalue.)

Thisis objectionable if the function has no need to modify the
target. The questionis. how can we pass a pointer to afunction
and restrict the function from modifying the target of that pointer?

void Print(const int* Array, const int Size) {
for (int Idx = 0; Idx < Size; ldx++) {
cout << setw(5) << ldx

<< setw(8) << Array << endl ;

Theuse of “const ” preceding a pointer parameter specifies
that the value of the target of the pointer cannot be modified
by the called function. So, inthe code above, Print() is
forbidden to modify the value of the target of the pointer
Array.

Print () alsocannot modify the value of the actual pointer
parameter since that parameter is passed by value.

Intro Data Structures & SE

const Pointers 3. Pointers 21

If “const int* i Ptr” meansthat the TARGET of i Ptr isto
be treated asaconst object, how would we specify that a pointer
Isitself tobeaconst ?

[/ constant pointer to Int
Int* const I1Ptr = new int(42);

Here, the value stored in the target of i Pt r can be changed,
but the address stored ini Pt r cannot be changed. So, i Pt r
will always point to the same location in memory, but the
contents of that location may change.

Given the declaration of i Pt r above:

*I1Ptr = 17; |/ |eqal ?
I nt anlnt = 55; _L’
| Ptr = &anl nt; [l 111l egal

Finally we can have a constant pointer to a constant target:

const int* const cPtr = newint(42);

Intro Data Structures & SE

const Summary 3. Pointers 22
Courtesy of Bjarne Stroustrup, “The C++ Programming Language”

void fl(char* p) {

char s = ; /| pointer to char

const char* pc = s; /'l pointer to constant char

pc ='qg"; /1l error: target is constant

pc = p; /'l legal: pointer is nalleable
char* const cp = s; /'l constant pointer

cp ='dg"; /Il legal: target is nmalleable
cp = p; /] error: pointer is constant
const char* const cpc = s; /'l constant pointer to

/| constant target
cpc ='g'; /'l error: target is constant

cpc = p; /1l error: pointer is constant

How to keep it straight? Stroustrup suggests reading the
declarations backwards (right to left):

char* const cp = s;

\

cp isaconstant pointer to achar

Intro Data Structures & SE

Pointer Array Arithmetic 3. Pointers 23

If apointer targets an array, it is possible to navigate the array by
performing arithmetic operations on the pointer:

#i ncl ude <i ostreany
#1 ncl ude <i omani p>
#1 ncl ude <cstring>
usi ng nanmespace std;

void main() {

char s =
char* p = s;

for (int 1dx = 0; ldx < strlen(s); ldx++, p++) {
cout << setw(3) << ldx << << *p << endl;

}
}

produces the output:

WN RO
37T 0O

Consider the update section of the for loop. At the end of each pass
through the loop, we increment the value of the pointer p:

p++; /'l increments the value of p

(*p)++; [/ increnents the value of the target of p

The mystery hereis. why does incrementing the value of p cause p
to step through the array of characters, one-by-one?

Intro Data Structures & SE

Incrementing Pointers 3. Pointers 24

From B. Stroustrup, “The C++ Programming Language’:

The result of applying the arithmetic operators+, -, ++,0r - - to
pointers depends on the type of the object pointed to. When an
arithmetic operator is applied to a pointer p of type T*, p is
assumed to point to an element of an array of objects of type T;
p+1 pointsto the next element of that array, and p- 1 pointsto the
previous element. Thisimpliesthat the integer value of p+1 will
besi zeof (T) larger than the integer value of p.

In other words, the result of incrementing a pointer depends on the
type of thing to which it points.

const int SIZE = 5;

int i Array[SI ZE] = {32, 17, 89, 43, 91},

Int* i Ptr = 1 Array;

for (int k = 0; k < SIZE;, k++, iPtr++)

cout << setw(3) << k
<< setw(10) << i Ptr
<< setw(10) << *iPtr
produces:
0 006AFHDO) 32 |
1 00GAFDD4 17 Why does this
2 006AFDDS g0 | S output make
8 sense?
3 006AFDDC 43
4 006AFDEQ 91

Intro Data Structures & SE

Array of Structs Pointer 3. Pointers 25

#i ncl ude <i ostreane
#i ncl ude <i omani p>
usi ng nanespace std,;

struct Conpl ex {

doubl e Real ;
doubl e | magi nary;

b
void main() {
const int SIZE = 5;

Conpl ex cArray ;
Conpl ex* cPtr = cArray;

cout << << cPtr << endl;
CPtr ++;
cout << << chPtr << endl;
}
produceS' cPtr: OO6AFD/8

cPtr: OOG6AFD88

Be very careful with code such asthis....

.... thelogic makes sense only if the target of the pointer isan
array....

.... but, the syntax is legal no matter what the target of the pointer
happens to be....

Intro Data Structures & SE

Pointer Incrementing Abuse

#i ncl ude <i ostreane
#i ncl ude <i omani p>
usi ng nanespace std;

void main() {
doubl e x = 3.14159;

3. Pointers 26

doubl e* dPtr = &x;
cout << << dPtr << end
<< << *dPtr << endl;
dPt r ++;
cout << << dPtr << endl
<< << *dPtr << endl;
}
dPtr: OO06AFDCO
Produces. | . ypr: 3. 14159
dPtr: OO6AFDC8
*dPtr: 1.20117e-306

Incrementing dPt r makes no sense (logically) since that will
simply make the target of dPt r the 8 bytes of memory that follow

X.

Intro Data Structures & SE

Arrays of Pointers 3. Pointers 27

Declarations:
Given: const int size = 20;
struct rectype {
I nt fieldl;
float field2;
char field3
¥
typedef rectype *recktr;
rectype recl = {1, 3. 1415f };
rechPtr rayHrs
rayPtrs = &recl;
Member Access

Field Access Examples:

cout << (*rayPtrs[size-1]).fieldl
<< (*rayPtrs[size-1]).field2
<< (*rayPtrs[size-1]).field3;

Arrow Operator
Short-hand notation:

cout << rayPtrs[size-1]->fieldl
<< rayPtrs[size-1]->fiel d2
<< rayPtrs[size-1]->field3;

’? Using the same sorting algorithm, why is sorting an

array of pointers to records faster than sorting an
IL | array of records?

-~

Intro Data Structures & SE

Dynamic Memory Problems 3. Pointers 28

Given: typedef int *intPtr;
intPtr iptrl, iptr2;

Garbage

Previoudly allocated memory that is inaccessible thru any
program pointers or structures.

A

Example: iptr1 *iptrl
before 2
Q) .
‘\/i\/' Iptrl = newint (6); _
R iptrl = NULL; during —+—»|6
_\L after . @
|ases

Two or more pointers referencing the same memory

location.
Example:

0 iptrl T—
W iptrl = new int (6); 6
i iptr2 = iptri; iptr2 1 —"

V4

Dangling Pointers
Pointers that reference memory locations previously

deallocated.

Example: |iptrl = newint (6); |iptrl |[?
iptr2 = iptri, o
del ete iptrl; iptr2 J—> :

=~dO,

memory leaks

Intro Data Structures & SE

Reference Variables 3. Pointers 29

Reference Variable Declarations

The ampersand ‘& character is used for reference variable
declarations:

int& iptr;
float & ptrl, & ptr2;

Reference variables are
aliases for variables.

Pointer Differences
Reference variables do NOT use the address and dereference
operators (& *).
Compiler dereferences reference variables transparently.
Reference variables are constant addresses, assignment can

only occur as initialization or as parameter passing,
reassignment isNOT allowed.

Examples: char achar = ‘A ;

char& chref = achér;
/'l char* chptr = &achar;

chr ef = ‘B ;
[/ achar = ‘B ;
[l *chptr = ‘B ;

Purpose

Frees programmers from explicitly dereferencing accessing,
(in the same way nonpointer variables do).

‘Cleans up the syntax’ for standard C arguments and
parameters.

Intro Data Structures & SE

Reference Returns 3. Pointers 30

Return by Value
Normally most function returns are by value:

I nt f(|nt& a){
int b =
. .
return(b);
|

The function does not actually return b, it returns a copy of b.

Return by Reference
Functions can return references:

|nt&f(|nt& a) {

int b = Good compilers will issue a
. . warning for returning a
return(b); reference to a local variable.

}//f *** pad ***

The code above contains a subtle trap. The function returns a
reference to avariable b which will no longer exist when the
function exits and goes out of scope. Returning a reference to
an already referenced variable is acceptable, (although most
likely unnecessary and confusing).

nt& I(Ibnt & a) { Do NOT return references to
I//n S private data members of a
return(a); class. This violates the

}/1f *** aljas *** encapsulation of the class.

Intro Data Structures & SE

