Introduction to ADTs

Slides

Table of Contents

Data Types

Language Defined Data Type
Language Defined Data Type (cont.)
Abstract Data Types

Abstract Data Types (cont.)

Info Hiding / Encaosulation
Rationale for Classes

The C++ Class Type

A Simple Date Class

A Simple Date Class (cont.)
Method Definitions

I mplementation Organization
Building on the Methods
Building on the Methods (cont.)
Additional Methods

Date Class Design

Taxonomy of Member Functions
Class Constructors

Default Constructor

Multiple Constructors
Overloading, Briefly

Operator Overloading

Default Arguments

Default Argument Values Usage
Inline Member Functions
Structure Charts with Classes
Structure Charts with Classes (cont.)

Intro Data Structures & SE

2. Intro ADTs

1

Data Types 2. Intro ADTs 2

Data Type
a collection of related data elements plus operations that can
be performed upon values of the datatype.
Types
Built-In (Language Defined)
Tt Array, Structures (Records), Classes
Programmer Defined, Abstract Data Types (ADT)
T Lists, Stacks, Queues

Views
Application

T usagein aparticular program
(variant box view)

Abstract (Logical)
T organization viewed by the user
(black box view)

| mplementation (Physical)
T coding methods used to
represent the data and the operations ,’

(open box view)

Intro Data Structures & SE

Language Defined Data Type 2. Intro ADTs

Example
Two-Dimensiona Array

T Application View: maze, surface points

T Logica View: table, matrix

T Physica View
Stored sequentially (implieslogical to physical mapping)
Index Limits(L1.. UL, L2..U2)
Length=(U1- L1+ 1)*(U2-L2+1)

Accessing

Column Mgjor: al elementsin acolumn are stored in
sequence

FORTRAN - Column Major

Row Magjor: al elementsin arow are stored in sequence
“C" , PASCAL - Row Magor

Intro Data Structures & SE

3

Language Defined Data Type 2. Intro ADTs
Row Major Accessing:
Location of [i] [j] element (Row Major)

B +[(U2-L2+1) * (i-L1) + (j-L2)] * size of element

Logical user view

B = base address of array
(U2-L2+ 1) =Size of Row

(i - L1) = number of rowsto skip

(J - L2) = number of columnsto skip

Physical (row-major) compiler programmer linear view
1,1|1,2|1,3 1,4| 2,1| 2,2I 2,3| 2,4| 3,1| 3,2| 3,3| 34

B

Physical (column-major) compiler programmer linear view
1,1|2,1|3,1|1,2|2,2| 3,2I 1,3 2,3| 3,3 1,4| 2,4| 34

B

Intro Data Structures & SE

4

Abstract Data Types 2.Intro ADTs 5

ADT
New data type defined by programmer Ii
Includes: /
T Set of Data Objects
T Set of Abstract Operations >
Data Abstraction
Design of abstract data objects and operations upon those
objects.

Abstraction in programming separates a data type’ s logical
properties from its implementation.

Information Hiding
Used in the design of functions and new data types.

Each component should hide as much information as
possible from the users of the component (function).

| mplementation details are hidden from the user by
providing access through a well-defined communication
Interface.

Computer Science Dept Va Tech Aug., 2001 Intro Data Structures & SE ©1995-2001 Barnette ND, McQuain WD

Abstract Data Types 2.Intro ADTs 6

Encapsulation

the bundling of data and actions in such away that the
logical properties of the data and actions are separated from
the implementation detaills [Daleg].

accessto an ADT isrestricted to a specified set of supplied
operations
Implies:
T User has no "Need to Know"
T User may not directly manipulate data elements
Advantages

T Changesto the underlying operators or representations does not
affect code in aclient of the datatype

T Extends programming languages

ADT Levels

The distinction between
these terms is not well
recognized. Some authors
do not distinguish between
information hiding and
encapsulation, while others
assign the opposite
definitions given here.

Computer Science Dept Va Tech Aug., 2001 Intro Data Structures & SE ©1995-2001 Barnette ND, McQuain WD

Info Hiding / Encapsulation 2. Intro ADTs 7

What is the difference between Information Hiding and
Encapsulation?

Information Hiding
a guestion of program design
In many cases. Language Supported (functions, procedures)

Encapsulation
aquestion of language design

"...an abstraction is effectively encapsulated only when the
language prohibits access to information hidden within the

abstraction."
Ada packages “C” modules offer limited
encapsulation facilities.
C++ classes

T “C” modules

Info Hiding Example: Strings

String Data Type provides interface
| to the C++ class. Operation
implementation details are hidden.

| User
Program

Computer Science Dept Va Tech Aug., 2001 Intro Data Structures & SE ©1995-2001 Barnette ND, McQuain WD

Rationale for Classes 2. Intro ADTs 8

Bjarne Stroustrup from The C++ Programming Language, 3rd
Edition, page 223:

The am of the C++ class construct is to provide the
programmer with atool for creating new types that can be used
as conveniently as the built-in types.

A typeis aconcrete representation of a concept.

For example, the C++ built-in type double with its operations +,
-, *, etc., provides a concrete approximation of the mathematical
concept of areal number. A classis auser-defined type.

We design a new type to provide a definition of a concept that
has no counterpart among the built-in types.

A program that provides types that closely match the concepts
of the application tends to be easier to understand and to modify
than a program that does not.

A well-chosen set of user-defined types makes a program more
concise. In addition, it makes many sorts of code analysis
feasible. In particular, it enables the compiler to detect illegal
uses of objects that would otherwise remain undetected until the
program is thoroughly tested.

Intro Data Structures & SE

The C++ Class Type 2.Intro ADTs 9

The C++ class type provides a means to encapsulate
heterogeneous data elements and the operations that can be
performed on them in asingle entity.

A classtypeislike astruct typein that it may contain data
elements, called data members, of any simple or structured type.

A class type may also contain functions, called function members
or methods, that may be invoked to perform operations on the data
members.

The class type also provides mechanisms for controlling access to
members, both data and function, viathe use of the keywords
public, private and protected. (Default access mode is private.)

A variable of aclasstypeisreferred to as an object, or as an
Instance of the class.

The struct language construct was extended to make it
equivalent with a class, except its members are by
default public. While structs may be used the same as
classes they are rarely employed as such.

Intro Data Structures & SE

A Simple Date Class 2. Intro ADTs 10

Here's a simple class type declaration:
cl ass DateType {

publ i c:

void Initialize(int newMbnth, int newbDay,

I nt newYear) ;

int Yearls() const; /] returns year

I nt Monthls() const; [l returns nonth

i nt Dayls() const ; /'l returns day
private:

I nt Year;

i nt Mont h;

I nt

b

Day;

Indicates Fn is a const member and
cannot change any data member values.

The DateType class incorporates three data members, Y ear,
Month, and Day, and four function members.

Note the class type declaration defines a data type — it does not
declare avariable of that type.

Also note that the class type declaration above includes only
prototypes of the function members, not their definitions.

Typically, the class type declaration is incorporated into
a header file, providing a user with a description of the
interface to the class, while the implementations of the
class methods are contained in a cpp file.

Intro Data Structures & SE

Simple Date Class Continued 2. Intro ADTs 11

Given the class type declaration, a user may declare variables of
that type in the usual way:

Dat eType Today, Tonorrow, Anot her Day;

Asusual, no default initializations are performed. It isup to the
user to assign values to the data members of these variables.

The data members of the DateType class are declared as being
private. The effect isthat the data members cannot be accessed in
the way fields of a struct variable are accessed:

Today. Month = 9;

will generate a compile-time error. A user of a DateType variable
may access only those members which were declared public. So,
the user could initialize Today by using the public member
functionl nitialize():

Today.Initialize(9, 28, 1998);

Similarly, auser can only obtain the value of the Year member by
using the public member function Year | s()

I nt Thi sYear = Today. Yearls();

Note the use of the field selection operator *.".

Intro Data Structures & SE

Method Definitions 2. Intro ADTs 12

Of course, the member functions of a class type must be defined.
Moreover, it is possible for two different class types to have
member functions with the same names. In fact, you' ve aready
seen that with file streams.

To clearly denote the connection between the function being
defined and the class type to which it belongs, the function
definition must indicate the relevant class type name by using the
scope resolution operator (: :):

[l DateType::Initialize()

[l Pre: none

[l Post: self.Year == newYear
[/ sel f. Month == newiVbnt h
[/ sel f. Day == newbDay

voi d DateType::Initialize(int newlbnth,
I nt newDay, int newvYear)

{
Year = newYear, /| poor design here:
Mont h = newMbont h; [l no error checking
Day = newbDay;

}

Note that, as a member function of class DateType, Initialize()
may access the data members directly:

members (data or function) declared at the outermost
level of a class type declaration have class scope; that is,
they are accessible by any function member of an
instance of that class type.

Intro Data Structures & SE

Implementation Organization

2. Intro ADTs

Suppose that a user of the DateType class writes a program
consisting of asingle sourcefile, Dat eCl i ent . cpp.

b

return

}

/I Dated ient.cpp
cl ass DateType {

I nt DateType::Mnthls() const {

Mont h;

For separate compilation, atypical organization of the class
implementation would involve two files:

Dat eType. h

Dat eType. cpp

class declaration
function member definitions

The user would incorporate the DateType class files as follows:

/I Dated ient.cpp
#i ncl ude “DateType. h”

/ | Dat eType. h
cl ass Dat eType {

};

13

/ | Dat eType. cpp

#i ncl ude “DateType. h”

I nt DateType:: Monthls() const {
return Mont h;

}

Intro Data Structures & SE

Building on the Methods 2. Intro ADTs 14

In addition to using the class member functions directly, the user
of aclass may aso implement higher-level functions that make
use of the member functions. For example:

enum Rel ati onType {Precedes, Sane, Foll ows};

Rel ati onType

Conpar edTo(Dat eType dat eA, DateType dateB) {

I f (dateA Yearls() < dateB. Yearls())
return Precedes;
If (dateA Yearls() > dateB. Yearls())
return Fol | ows;
I f (dateA Monthls() < dateB. Monthls())
return Precedes;
if (dateA Monthls() > dateB. Monthls())
return Fol | ows;
I f (dateA Dayls() < dateB.Dayls())
return Precedes;
I f (dateA Dayls() > dateB. Dayls())
return Fol | ows;
return Sane;
}
Then:

Dat eType Tonorrow, Anot her Day;

Tonorrow. I nitialize(10, 6, 1881);
Anot herDay.Initialize(10, 12, 1885);

I f (ConparedTo(Tonorrow, AnotherDay) == Sane) {

cout << “Think about it, Scarlett!” << endl;

Intro Data Structures & SE

Building on the Methods

Another example:

2. Intro ADTs

cout
cout
cout
cout
cout

case
case

<<
<<
<<
<<
<<

void PrintDate(DateType abDate) {
PrintMonth(aDate. Monthls());

aDat e. Dayl s();

setw(4) << aDate.Yearls();

endl ;

void PrintMnth(int Mnth) {
swtch (Month) {

1:

2:

cout
cout

case 12: cout

<< “January”; return;
<< “February”; return;

<< “Decenber”; return;

default: cout << *“Juvenber”;
}
}
Then:
Dat eType LeapDay;
LeapDay. I nitialize(2, 29, 2000);
Pri nt Dat e(LeapDay) ;
will print:

February 29, 2000

Intro Data Structures & SE

15

Additional Methods 2. Intro ADTs 16
Of course, the DateType class designer could also have
Implemented a member function for comparing two dates:
// add to DateType. h:
enum Rel ati onType {Precedes, Sane, Foll ows};

Rel ati onType ConparedTo(Dat eType ot her Date) const;
/1 add to DateType. cpp:
Rel ati onType Dat eType: :
Conpar edTo(Dat eType ot herDate) const {
I f (Year < otherDate. Yearls())
return Precedes;
if (Year > otherDate. Yearls())
return Foll ows;
if (Month < otherDate. Monthls())
return Precedes;
if (Month > otherDate. Monthls())
return Foll ows;
if (Day < otherDate.Dayls())
return Precedes;
i f (Day > otherDate. Dayls())
return Foll ows; :
return Sane: _//alternatlvely
} I f (Year < otherDate. Year)

Then, assuming the declarations and initializations from slide 14:

I f (Tonorrow. Conpar edTo(Anot her Day) == Sanme) {

cout << “Think about it, Scarlett!” << endl;

Intro Data Structures & SE

Date Class Design 2. Intro ADTs 17

Class Completeness

* The Date class as given is woefully incomplete.

 |ncreating aclass the designer must carefully consider all
possi ble operations that may need to be performed.

» Decisions as to whether an operation should be part of aclass or
externally implemented by the user are affected by multiple
factors:

 |sthe operation likely to be required for multiple
applications of the class? (l.e. is the operation genera
rather than specific to a problem?)

* |sthe operation needed to insure the correctness/
robustness of the class? (Do all of the operations maintain
the info hiding / encapsulation of the class?)

Missing Date Operations
» Two of the more obvious missing functions are date increment
and decrement functions (mutators):

// add to Date C ass

voi d Next (); /1increment date
void Previous (); //decrenent date

One could ask if it isthe responsibility of the class designer or user
to implement the above operations? Since the answer to the above
guestions are yes, it isthe class designer’ s responsibility. Thisis
obvious when the designer considers multiple applications that

will need the operations.

|mplementation will require consideration of the length of a
month, possible |eap year/century, lower date calendar limit.

Intro Data Structures & SE

Taxonomy of Member Functionsz2. intro ADTs 18

Member functions implement operations on objects. The types of
operations available may be classified in a number of ways. Here
Is one taxonomy from Nell Dale;

Constructor

an operation that creates a new instance of a class (object)

Destructor

an operation that destroys an object

Transformer (mutator)

an operation that changes the state of one, or more, of the
data members of an object

Observer (reporter, accessor, selector, summary)

an operation that reports the state of one or more of the data
members of an object, without changing them

Iterator
an operation that allows processing of all the components of a

data structure sequentially

Recalling the DataType declaration, Initialize() isa mutator while
Yearls(), Monthls() and Dayls() are observers.

Intro Data Structures & SE

Class Constructors 2. Intro ADTs 19

The DateType class has a pseudo-constructor member function,
but the situation isnot ideal. A user may easily forget to call
Initialize() resulting in mysterious behavior at runtime.

It is generally preferred to provide a constructor which guarantees
that any declaration of an object of that type must be initialized.

This may be accomplished by use of a member function:

//add to DateType class declaration

Dat eType(int aMonth, int aDay, int aYear);

//add to DateType class nmenber functions

Dat eType: : Dat eType(int aMonth, int aDay, int aYear) {

if ((aMonth >= 1 &% aMonth <= 12)
&% (abDay >= 1) && (aYear >= 1)) {
Mont h = alMbnt h;

Day = abDay;
Year = aYear,
}
el se {
Month = Day = 1; /1l default date
Year = 1980;
}

}

» the name of the constructor member must be that of the class

 the constructor has no return value; voi d would be an error

* the constructor is called automatically if an instance of the class
Is defined; if the constructor requires any parameters they must
be listed after the variable name at the point of declaration

Intro Data Structures & SE

Default Constructor 2. Intro ADTs 20

Assuming the DateType constructor given on the previous slide,
definitions of an instance of DateType could look like:

Dat eType aDat e(10, 15, 1998);

Dat eType bDate(4, 0, 1999); /1l set to 1/1/1980

If you do not provide a constructor method, the compiler will
automatically create a simple default constructor. This automatic
default constructor:

 takesno parameters

» calsthe default constructor for each data member that is an
object of another class

» provides no initialization for data members that are not objects

Given the limitations of the automatic default constructor:

Always implement your own default
constructor when you design a class!

Intro Data Structures & SE

Multiple Constructors 2. Intro ADTS

It is possible to have more than one constructor for a class:

21

cl ass Conpl ex {
private:
doubl e Real, | magi nary;
publi c:
Compl ex();
Conpl ex(doubl e Real Part, double InmagPart);

doubl e Modul us();

b
Conpl ex: : Compl ex() {
Real = 0.0,
| magi nary = 0.0;
}
Conpl ex: : Conpl ex(doubl e Real Part, double InmagPart) {
Real = Real Part;
| magi nary = | nmagPart;

}

doubl e Conpl ex:: Modul us() {
return (sqrt(Real *Real + |Inaginary*lnmaginary));

}
Conmpl ex x(4, -1); /[l x == 4.0 - 1.0i
Conpl ex vy; /Il y == 0.0 + 0.0i

doubl e xMagnitude = x. Modul us();

S0, how does the compiler determine which constructor to call?

Intro Data Structures & SE

Overloading, Briefly 2. Intro ADTs 22

In C++ itislegal, athough not always wise, to declare two or
more functions with the same name. Thisis called overloading.

However, it must be possible for the compiler to determine which
definition is referred to by each function call. When the compiler
encounters a function call and the function name is overloaded, the
following criteriaare used (in the order listed) to resolve which
function definition is to be used:

Considering types of the actual and formal parameters:

1. Exact match (no conversions or only trivial oneslike array
name to pointer)

2. Match using promotions (bool to int; char to int; float to
double, etc.)

3. Maitch using standard conversions (int to double; double to
int; etc.)

4. Maitch using user-defined conversions (not covered yet)

5. Matchusing theéllipsis. . . in afunction declaration (ditto)

Clear as mud, right? Keep thissimple for now. Only overload a
function name if you want two or more logically similar functions,
like the constructors on the previous slide, and then only if the
parameter listsinvolve different numbers of parameters.

Intro Data Structures & SE

Operator Overloading 2. Intro ADTs 23

Standard Operator Overloading
C++ language operators, (e.g., “==", “++”, etc.) can be
overloaded to operate upon user-defined classes.

/'l add to DateType cl ass decl arati ons:
bool operator==(const DateType& otherDate) const ;

/1l add to DateType class nenber functions:
bool DateType: : operat or==
(const DateType& ot herDate) const {

return((Day == ot her Dat e. Dayl s()) &&
(Month == otherDate. Monthls()) &&
(Year == otherDate.Yearls()));

To “call” the overloaded operator function:

Dat eType aDat e(10, 15, 1998);
Dat eType bDate(10, 15, 1999);

if (aDate == bDate) { .

Do not use dot operator to call:

aDate. ==(bDate) // error
thisis basically how the compiler translates the expression.
overloading the other relational operators, ‘<’, ‘>’, would
eliminate need for enum RelationType & ComparedTo Fn

standard relational operators, overloaded or not, cannot be
used as case tags in switch statements.

would force switch RelationType statement to be
Implemented as if else statements

Intro Data Structures & SE

Default Arguments 2. Intro ADTs 24

Initialized Parameters

technigue provided to allow formal parameters to be
assigned default values that are used when the
corresponding actual parameter, (argument), is omitted.

const int | BMPC = 1980:;

/1l add to DateType cl ass decl arati ons:
Dat eType(int aMont h=1, int aDay=1, int aYear=I BMPC);
/| add to DateType class nenber functions:
Dat eType: : Dat eType(int aMonth, int aDay, int aYear){
If ((aMonth >= 1 &% aMonth <= 12)
&% (abDay >= 1) && (aYear >= 1)) {

Mont h = aMont h;
Day = abDay;
Year = aYear,
}
el se {
Month = Day = 1; /| default date
Year = | BMPC,
}

If adefault argument is omitted in the call, the compiler
“automagically" inserts the default value in the call.

Dat eType dDate(2, 29); /'l Feb 29, 1980
Dat eType eDat e(3); /1 March 1, 1980
Dat eType fDate(); /1 Jan 1, 1980

Omitted arguments in the call must be the rightmost arguments.
Dat eType dDate(, 29); /'l error

Intro Data Structures & SE

Default Argument Values
Usage

Default Arguments in prototypes

2. Intro ADTs 25

Omitted arguments in the function prototype must be the
rightmost arguments.

/'l add to DateType cl ass decl arati ons:
Dat eType: : Dat eType JUCITRTITINO
(int aMonth=1,:int aDay,*int aYear=IBWPC);

* .
L4
] .
a .
"taaamannsr®

[l error

Default Arguments - Guidelines

Default arguments are specified in the first
declaration/definition of the function, (i.e. the prototype).

Default argument values should be specified with
constants.

In the parameter list in function declarations, all default
arguments must be the rightmost arguments.

In callsto functions with > 1 default argument, all
arguments following the first (omitted) default argument
must also be omitted.

Default Arguments and Constructors

Default argument constructors can replace the need for
multiple constructors.

Default argument constructors can ensure that no object
will be created in an non-initialized state.

Constructors with completely defaulted parameter lists,
(can be invoked with no arguments), becomes the class
default constructor, (of which there can be only one).

Intro Data Structures & SE

Inline Member FNs 2. Intro ADTs 26

Class declaration inline functions

inline functions should be placed in header files to allow
compiler to generate the function copies.

cl ass Dat eType {
publi c:

void Initialize(int newibnth, int newbDay,

I nt newYear) ;

int Yearls () const {return Year;};

int Monthls () const {return Month;};

I nt Dayls () const {return Day;};
private:

I nt Year, Month, Day;

b

Member functions defined in a class declaration are
implicitly inlined.

Efficiency istraded off at the expense of violating the
information hiding by allowing the class clients to see the
Implementation.

Reference to the class data members by the inline
functions before their actual definition is perfectly
acceptable due to the class scoping.

To avoid confusion, the private members can be defined
first in the class or the inline functions can be explicitly
defined after the class declaration, (but in the header file).

Changing a header file containing an inline function will
result in recompilation of al filesincluding the header.

Intro Data Structures & SE

Structure Charts with Classes 2. Intro ADTs

To reflect the use of classes in your modular structure
chart, do the following:

First, create a class form for each of your classes:

27

Name; Complex (thisis an extension of the example on slide
3.14)
Pur pose: To provide a means of representing and manipulating
complex numbers
Constructors: Complex()
constructs 0.0 + 0.0i
Complex(double x, double y)
constructs x + i
Operations
Mutators: setReal (double x)
assigns Real the value x
setimag(doubley)
assigns Imaginary the valuey
Reporters: Modulus()
returns the modulus (magnitude) of the number
Data double Redl
Members: double Imaginary

Intro Data Structures & SE

Structure Charts with Classes 2. Intro ADTs 28

Second, in the function boxes in the modular structure
chart, indicate if acall isto amember function of an object
by using the class name and the scope resolution operator.
Show the invoking object, (an implicit parameter) as an
Input parameter if the member function is areporter const
member function. Otherwise, show the invoking object as
an output or input/output parameter:

o Xzi g cSi ze

\ 4

Conpl ex: : Modul us()

Here, the return value is being assigned to a variable named
cSi ze inthe calling function.

Note: usage of the name of the class and the name of the
obj ect.

Intro Data Structures & SE

Inventory Class: Declaration 2. intro ADTs 29

Example of a simple data class of inventory records.

// *kkkkkkkkkk*k II\I\/EN’I’OQY CLASS DECLARATI O\I kkkkkkkkhkhkhkhk*k

class Invlitem {

privat e:

string SKU, /1 StocK Unit #: KEY FIELD
string Description; /lltemDetails

I nt Ret ai | ; /1Selling Price

I nt Cost; /|| Store Purchase Price

I nt Fl oor; [/ Nunber of Itens on display
I nt War ehouse; /I Nunber of ltenms in stock
publ i c:

Invitem(); /I default constructor

Inviten(const string& i SKU, //paraneter constructor
const string& i Description,

I nt | Retail,

I nt | Cost,

I nt | Fl oor,

i nt | War ehouse) ;
/| Reporter Menber Functions
string get SKU() const,
string getDescription() const;
I nt getRetail () const ;
I nt get Cost () const ;
I nt get Fl oor () const;
I nt get War ehouse() const;

/I Mut at or Menber Functi ons
void setDescription(const string& descript);
void setRetail (int custoner);
void setCost (int actual);
void setFloor (int display);
void setWarehouse(int stock);
}; /] class Invlitem

Computer Science Dept Va Tech Aug., 2001 Intro Data Structures & SE ©1995-2001 Barnette ND, McQuain WD

Inventory Class: Constructors 2. intro ADTs

30

/1
/1
/1
/1
/1
/1

/1
/1
/1
/1
/1
/1

}

————————————— Constructor Functions ------------------

FEEEEEEErrr bbb bbb rrr i rrrirrrrr

Default Constructor for Invltem C ass

Par anet er s: none
Pre: none
Post : I nvlitem obj ect has been initialized

Invitem:Invitem) {

SKU

Descri ption
Ret ai |

Cost

Fl oor = -1;
War ehouse = -1;

(| I I | I
1
=

} /1 end Invitem))

FEEEEEErr i i i r il rrir2rr

Par anet er Constructor for Invlitem C ass

Par anet er s: I nvltenRec
Pre: none
Post : I nvltem obj ect has been set

Invitem:Invitemconst string& i SKU,

const string& i Description,

i nt i Retail,

i nt i Cost,

i nt i Fl oor,

i nt I War ehouse) {
SKU = | SKU,;
Description = iDescription;
Ret ai | = iRetail;
Cost = | Cost;
Fl oor = i Fl oor;
War ehouse = i War ehouse;

/1l end Invitem)

Computer Science Dept Va Tech Aug., 2001 Intro Data Structures & SE ©1995-2001 Barnette ND, McQuain WD

Inventory Class: Reporters 2. Intro ADTs

31

N R Reporter Functions ------------------
/'l Fn Headers omtted for space

string Invlitem:get SKU() const {
return(SKU);

} /1 end get SKU()

string I nvlitem : getDescription() const {
return(Description);

} // end getDescription()

I nt Invitem:getRetail () const {
return(Retail);

} // end getRetail ()

i nt Invlitem:get Cost() const {
return(Cost);

} // end getCost()

i nt Invitem: getFloor() const {
return(Fl oor);

} // end getFloor()

I nt I nvltem : get War ehouse() const {
ret ur n(War ehouse) ;

} // end getWarehouse()

Intro Data Structures & SE

Inventory Class: Mutators 2. Intro ADTS

32

N R Mut at or Functions ------------------
/'l Fn Headers omtted for space

voi d Invitem :setDescription(const string& descript) {
Descri ption = descri pt;

} // end setDescription(const string descript)

voi d Invitem :setRetail (int custoner) {
Retail = custoner;

} // end setRetail (int custoner) {

voi d Invitem :setCost(int actual) {
Cost = actual;

} // end setCost(int actual)

voi d Invitem :setFloor(int display) {
Fl oor = displ ay;

} /1 end setFloor(int display)

voi d I nvltem : set War ehouse(i nt stock) {
War ehouse = st ock;

} // end setWarehouse(int stock)

Note: the class contains no mutator
function for the SKU member. The
SKU member is the primary/key field
and thus is considered inviolate.

Intro Data Structures & SE

