
Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

12. Intro ADTs

Intro Data Structures & SE

Introduction to ADTs

Slides

1. Table of Contents
2. Data Types
3. Language Defined Data Type
4. Language Defined Data Type (cont.)
5. Abstract Data Types
6. Abstract Data Types (cont.)
7. Info Hiding / Encaosulation
8. Rationale for Classes
9. The C++ Class Type
10. A Simple Date Class
11. A Simple Date Class (cont.)
12. Method Definitions
13. Implementation Organization
14. Building on the Methods
15. Building on the Methods (cont.)
16. Additional Methods
17. Date Class Design
18. Taxonomy of Member Functions
19. Class Constructors
20. Default Constructor
21. Multiple Constructors
22. Overloading, Briefly
23. Operator Overloading
24. Default Arguments
25. Default Argument Values Usage
26. Inline Member Functions
27. Structure Charts with Classes
28. Structure Charts with Classes (cont.)

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

22. Intro ADTs

Intro Data Structures & SE

Data Types

Data Type
– a collection of related data elements plus operations that can

be performed upon values of the data type.
Types

– Built-In (Language Defined)
† Array, Structures (Records), Classes

– Programmer Defined, Abstract Data Types (ADT)
† Lists, Stacks, Queues

Views
– Application

† usage in a particular program
(variant box view)

– Abstract (Logical)
† organization viewed by the user

(black box view)

– Implementation (Physical)
† coding methods used to

represent the data and the operations
(open box view)

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

32. Intro ADTs

Intro Data Structures & SE

Language Defined Data Type
Example

– Two-Dimensional Array

† Application View: maze, surface points
† Logical View: table, matrix
† Physical View

Stored sequentially (implies logical to physical mapping)
Index Limits (L1 .. U1, L2 .. U2)
Length = (U1 - L1 + 1)*(U2 - L2 + 1)

Accessing

– Column Major: all elements in a column are stored in
sequence

FORTRAN - Column Major

– Row Major: all elements in a row are stored in sequence
“C” , PASCAL - Row Major

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

42. Intro ADTs

Intro Data Structures & SE

Language Defined Data Type
Row Major Accessing:

– Location of [i] [j] element (Row Major)

β + [(U2-L2+1) * (i-L1) + (j-L2)] * size of element

β = base address of array
(U2 - L2 + 1) = Size of Row
(i - L1) = number of rows to skip
(j - L2) = number of columns to skip

1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4

3,1 3,2 3,3 3,4

Logical user view

mappings

1,1 1,2 1,3 1,4 2,1 2,2 2,3 2,4 3,1 3,2 3,3 3,4

Physical (row-major) compiler programmer linear view

β

1,1 2,1 3,1 1,2 2,2 3,2 1,3 2,3 3,3 1,4 2,4 3,4

Physical (column-major) compiler programmer linear view

β

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

52. Intro ADTs

Intro Data Structures & SE

Abstract Data Types

ADT
– New data type defined by programmer
– Includes:

† Set of Data Objects
† Set of Abstract Operations

Data Abstraction
– Design of abstract data objects and operations upon those

objects.
– Abstraction in programming separates a data type’s logical

properties from its implementation.

Information Hiding
– Used in the design of functions and new data types.
– Each component should hide as much information as

possible from the users of the component (function).
– Implementation details are hidden from the user by

providing access through a well-defined communication
interface.

create
empty
delete
insert

object

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

62. Intro ADTs

Intro Data Structures & SE

Abstract Data Types

Encapsulation
– the bundling of data and actions in such a way that the

logical properties of the data and actions are separated from
the implementation details [Dale].

– access to an ADT is restricted to a specified set of supplied
operations

– Implies:
† User has no "Need to Know"
† User may not directly manipulate data elements

– Advantages
† Changes to the underlying operators or representations does not

affect code in a client of the data type
† Extends programming languages

ADT Levels
The distinction between
these terms is not well
recognized. Some authors
do not distinguish between
information hiding and
encapsulation, while others
assign the opposite
definitions given here.

The distinction between
these terms is not well
recognized. Some authors
do not distinguish between
information hiding and
encapsulation, while others
assign the opposite
definitions given here.

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

72. Intro ADTs

Intro Data Structures & SE

Info Hiding / Encapsulation

What is the difference between Information Hiding and
Encapsulation?

Information Hiding
–a question of program design
–In many cases: Language Supported (functions, procedures)

Encapsulation
–a question of language design
–"...an abstraction is effectively encapsulated only when the
language prohibits access to information hidden within the
abstraction."
–Ada packages
–C++ classes

† “C” modules

Info Hiding Example: Strings

“C” modules offer limited
encapsulation facilities.

User
Program

insert
substr
erase
replace

string
String Data Type provides interface
to the C++ class. Operation
implementation details are hidden.

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

82. Intro ADTs

Intro Data Structures & SE

Rationale for Classes

Bjarne Stroustrup from The C++ Programming Language, 3rd
Edition, page 223:

The aim of the C++ class construct is to provide the
programmer with a tool for creating new types that can be used
as conveniently as the built-in types.

A type is a concrete representation of a concept.

For example, the C++ built-in type double with its operations +,
-, *, etc., provides a concrete approximation of the mathematical
concept of a real number. A class is a user-defined type.

We design a new type to provide a definition of a concept that
has no counterpart among the built-in types.

A program that provides types that closely match the concepts
of the application tends to be easier to understand and to modify
than a program that does not.

A well-chosen set of user-defined types makes a program more
concise. In addition, it makes many sorts of code analysis
feasible. In particular, it enables the compiler to detect illegal
uses of objects that would otherwise remain undetected until the
program is thoroughly tested.

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

92. Intro ADTs

Intro Data Structures & SE

The C++ Class Type

The C++ class type provides a means to encapsulate
heterogeneous data elements and the operations that can be
performed on them in a single entity.

A class type is like a struct type in that it may contain data
elements, called data members, of any simple or structured type.

A class type may also contain functions, called function members
or methods, that may be invoked to perform operations on the data
members.

The class type also provides mechanisms for controlling access to
members, both data and function, via the use of the keywords
public, private and protected. (Default access mode is private.)

A variable of a class type is referred to as an object, or as an
instance of the class.

The struct language construct was extended to make it
equivalent with a class, except its members are by
default public. While structs may be used the same as
classes they are rarely employed as such.

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

102. Intro ADTs

Intro Data Structures & SE

A Simple Date Class

Here’s a simple class type declaration:
class DateType {

public:

void Initialize(int newMonth, int newDay,

int newYear);

int YearIs() const; // returns year

int MonthIs() const; // returns month

int DayIs() const; // returns day

private:

int Year;

int Month;

int Day;

};

The DateType class incorporates three data members, Year,
Month, and Day, and four function members.

Note the class type declaration defines a data type — it does not
declare a variable of that type.

Also note that the class type declaration above includes only
prototypes of the function members, not their definitions.

Indicates Fn is a const member and
cannot change any data member values.

Typically, the class type declaration is incorporated into
a header file, providing a user with a description of the
interface to the class, while the implementations of the
class methods are contained in a cpp file.

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

112. Intro ADTs

Intro Data Structures & SE

Simple Date Class Continued

Given the class type declaration, a user may declare variables of
that type in the usual way:

DateType Today, Tomorrow, AnotherDay;

As usual, no default initializations are performed. It is up to the
user to assign values to the data members of these variables.

The data members of the DateType class are declared as being
private. The effect is that the data members cannot be accessed in
the way fields of a struct variable are accessed:

Today.Month = 9;

will generate a compile-time error. A user of a DateType variable
may access only those members which were declared public. So,
the user could initialize Today by using the public member
function Initialize():

Today.Initialize(9, 28, 1998);

Similarly, a user can only obtain the value of the Year member by
using the public member function YearIs():

int ThisYear = Today.YearIs();

Note the use of the field selection operator ‘.’.

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

122. Intro ADTs

Intro Data Structures & SE

Method Definitions
Of course, the member functions of a class type must be defined.
Moreover, it is possible for two different class types to have
member functions with the same names. In fact, you’ve already
seen that with file streams.

To clearly denote the connection between the function being
defined and the class type to which it belongs, the function
definition must indicate the relevant class type name by using the
scope resolution operator (::):

// DateType::Initialize()
// Pre: none
// Post: self.Year == newYear
// self.Month == newMonth
// self.Day == newDay
void DateType::Initialize(int newMonth,

int newDay, int newYear)
{

Year = newYear; // poor design here:
Month = newMonth; // no error checking
Day = newDay;

}

Note that, as a member function of class DateType, Initialize()
may access the data members directly:

members (data or function) declared at the outermost
level of a class type declaration have class scope; that is,
they are accessible by any function member of an
instance of that class type.

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

132. Intro ADTs

Intro Data Structures & SE

Implementation Organization

Suppose that a user of the DateType class writes a program
consisting of a single source file, DateClient.cpp.

For separate compilation, a typical organization of the class
implementation would involve two files:

DateType.h class declaration
DateType.cpp function member definitions

The user would incorporate the DateType class files as follows:

//DateClient.cpp
class DateType {

. . .
};

. . .

int DateType::MonthIs() const {
return Month;

}
. . .

//DateType.h
class DateType {

. . .
};

//DateClient.cpp
#include “DateType.h”
. . .

//DateType.cpp
#include “DateType.h”
int DateType::MonthIs() const {

return Month;
}
. . .

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

142. Intro ADTs

Intro Data Structures & SE

Building on the Methods

In addition to using the class member functions directly, the user
of a class may also implement higher-level functions that make
use of the member functions. For example:

enum RelationType {Precedes, Same, Follows};

RelationType ComparedTo(DateType dateA, DateType dateB) {

if (dateA.YearIs() < dateB.YearIs())
return Precedes;

if (dateA.YearIs() > dateB.YearIs())
return Follows;

if (dateA.MonthIs() < dateB.MonthIs())
return Precedes;

if (dateA.MonthIs() > dateB.MonthIs())
return Follows;

if (dateA.DayIs() < dateB.DayIs())
return Precedes;

if (dateA.DayIs() > dateB.DayIs())
return Follows;

return Same;
}

Then:
DateType Tomorrow, AnotherDay;

Tomorrow.Initialize(10, 6, 1881);
AnotherDay.Initialize(10, 12, 1885);

if (ComparedTo(Tomorrow, AnotherDay) == Same) {

cout << “Think about it, Scarlett!” << endl;
}

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

152. Intro ADTs

Intro Data Structures & SE

Building on the Methods

Another example:

void PrintDate(DateType aDate) {
PrintMonth(aDate.MonthIs());
cout << ‘ ’;
cout << aDate.DayIs();
cout << “, ”;
cout << setw(4) << aDate.YearIs();
cout << endl;

}

void PrintMonth(int Month) {
switch (Month) {
case 1: cout << “January”; return;
case 2: cout << “February”; return;

. . .
case 12: cout << “December”; return;
default: cout << “Juvember”;
}

}

Then:

DateType LeapDay;
LeapDay.Initialize(2, 29, 2000);

PrintDate(LeapDay);

will print:

February 29, 2000

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

162. Intro ADTs

Intro Data Structures & SE

Additional Methods

Of course, the DateType class designer could also have
implemented a member function for comparing two dates:

// add to DateType.h:

enum RelationType {Precedes, Same, Follows};

RelationType ComparedTo(DateType otherDate) const;

// add to DateType.cpp:
RelationType DateType::

ComparedTo(DateType otherDate) const {

if (Year < otherDate.YearIs())
return Precedes;

if (Year > otherDate.YearIs())
return Follows;

if (Month < otherDate.MonthIs())
return Precedes;

if (Month > otherDate.MonthIs())
return Follows;

if (Day < otherDate.DayIs())
return Precedes;

if (Day > otherDate.DayIs())
return Follows;

return Same;
}

//alternatively
if (Year < otherDate.Year)

Then, assuming the declarations and initializations from slide 14:

if (Tomorrow.ComparedTo(AnotherDay) == Same) {

cout << “Think about it, Scarlett!” << endl;
}

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

172. Intro ADTs

Intro Data Structures & SE

Date Class Design

Class Completeness
• The Date class as given is woefully incomplete.
• In creating a class the designer must carefully consider all

possible operations that may need to be performed.
• Decisions as to whether an operation should be part of a class or

externally implemented by the user are affected by multiple
factors:

• Is the operation likely to be required for multiple
applications of the class? (I.e. is the operation general
rather than specific to a problem?)

• Is the operation needed to insure the correctness /
robustness of the class? (Do all of the operations maintain
the info hiding / encapsulation of the class?)

Missing Date Operations
• Two of the more obvious missing functions are date increment

and decrement functions (mutators):
// add to Date Class

void Next (); //increment date
void Previous (); //decrement date

One could ask if it is the responsibility of the class designer or user
to implement the above operations? Since the answer to the above
questions are yes, it is the class designer’s responsibility. This is
obvious when the designer considers multiple applications that
will need the operations.
Implementation will require consideration of the length of a
month, possible leap year/century, lower date calendar limit.

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

182. Intro ADTs

Intro Data Structures & SE

Taxonomy of Member Functions

Member functions implement operations on objects. The types of
operations available may be classified in a number of ways. Here
is one taxonomy from Nell Dale:

Constructor

an operation that creates a new instance of a class (object)

Destructor

an operation that destroys an object

Transformer (mutator)

an operation that changes the state of one, or more, of the

data members of an object

Observer (reporter, accessor, selector, summary)

an operation that reports the state of one or more of the data

members of an object, without changing them

Iterator

an operation that allows processing of all the components of a

data structure sequentially

Recalling the DataType declaration, Initialize() is a mutator while
YearIs(), MonthIs() and DayIs() are observers.

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

192. Intro ADTs

Intro Data Structures & SE

Class Constructors

The DateType class has a pseudo-constructor member function,
but the situation is not ideal. A user may easily forget to call
Initialize() resulting in mysterious behavior at runtime.

It is generally preferred to provide a constructor which guarantees
that any declaration of an object of that type must be initialized.

This may be accomplished by use of a member function:

//add to DateType class declaration
DateType(int aMonth, int aDay, int aYear);
//add to DateType class member functions
DateType::DateType(int aMonth, int aDay, int aYear) {

if ((aMonth >= 1 && aMonth <= 12)
&& (aDay >= 1) && (aYear >= 1)) {
Month = aMonth;
Day = aDay;
Year = aYear;

}
else {

Month = Day = 1; // default date
Year = 1980;

}
}

• the name of the constructor member must be that of the class

• the constructor has no return value; void would be an error

• the constructor is called automatically if an instance of the class
is defined; if the constructor requires any parameters they must
be listed after the variable name at the point of declaration

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

202. Intro ADTs

Intro Data Structures & SE

Default Constructor

Assuming the DateType constructor given on the previous slide,
definitions of an instance of DateType could look like:

DateType aDate(10, 15, 1998);

DateType bDate(4, 0, 1999); // set to 1/1/1980

If you do not provide a constructor method, the compiler will
automatically create a simple default constructor. This automatic
default constructor:

• takes no parameters

• calls the default constructor for each data member that is an
object of another class

• provides no initialization for data members that are not objects

Given the limitations of the automatic default constructor:

Always implement your own default
constructor when you design a class!

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

212. Intro ADTs

Intro Data Structures & SE

Multiple Constructors

It is possible to have more than one constructor for a class:

class Complex {
private:

double Real, Imaginary;
public:

Complex();
Complex(double RealPart, double ImagPart);
. . .
double Modulus();

};

Complex::Complex() {
Real = 0.0;
Imaginary = 0.0;

}

Complex::Complex(double RealPart, double ImagPart) {
Real = RealPart;
Imaginary = ImagPart;

}

double Complex::Modulus() {
return (sqrt(Real*Real + Imaginary*Imaginary));

}

Complex x(4, -1); // x == 4.0 - 1.0i
Complex y; // y == 0.0 + 0.0i

double xMagnitude = x.Modulus();

So, how does the compiler determine which constructor to call?

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

222. Intro ADTs

Intro Data Structures & SE

Overloading, Briefly

In C++ it is legal, although not always wise, to declare two or
more functions with the same name. This is called overloading.

However, it must be possible for the compiler to determine which
definition is referred to by each function call. When the compiler
encounters a function call and the function name is overloaded, the
following criteria are used (in the order listed) to resolve which
function definition is to be used:

Considering types of the actual and formal parameters:

1. Exact match (no conversions or only trivial ones like array
name to pointer)

2. Match using promotions (bool to int; char to int; float to
double, etc.)

3. Match using standard conversions (int to double; double to
int; etc.)

4. Match using user-defined conversions (not covered yet)

5. Match using the ellipsis . . . in a function declaration (ditto)

Clear as mud, right? Keep this simple for now. Only overload a
function name if you want two or more logically similar functions,
like the constructors on the previous slide, and then only if the
parameter lists involve different numbers of parameters.

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

232. Intro ADTs

Intro Data Structures & SE

Operator Overloading

Standard Operator Overloading
– C++ language operators, (e.g., “==”, “++”, etc.) can be

overloaded to operate upon user-defined classes.

– To “call” the overloaded operator function:

– Do not use dot operator to call:
aDate.==(bDate) // error

this is basically how the compiler translates the expression.
– overloading the other relational operators, ‘<’, ‘>’, would

eliminate need for enum RelationType & ComparedTo Fn
– standard relational operators, overloaded or not, cannot be

used as case tags in switch statements.
– would force switch RelationType statement to be

implemented as if else statements

// add to DateType class declarations:
bool operator==(const DateType& otherDate) const ;

// add to DateType class member functions:
bool DateType::operator==

(const DateType& otherDate) const {
return((Day == otherDate.DayIs()) &&

(Month == otherDate.MonthIs()) &&
(Year == otherDate.YearIs()));

}

DateType aDate(10, 15, 1998);
DateType bDate(10, 15, 1999);

if (aDate == bDate) { . . .

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

242. Intro ADTs

Intro Data Structures & SE

Default Arguments

Initialized Parameters
– technique provided to allow formal parameters to be

assigned default values that are used when the
corresponding actual parameter, (argument), is omitted.

const int IBMPC = 1980;

// add to DateType class declarations:
DateType(int aMonth=1, int aDay=1, int aYear=IBMPC);
// add to DateType class member functions:
DateType::DateType(int aMonth, int aDay, int aYear){

if ((aMonth >= 1 && aMonth <= 12)
&& (aDay >= 1) && (aYear >= 1)) {
Month = aMonth;
Day = aDay;
Year = aYear;

}
else {

Month = Day = 1; // default date
Year = IBMPC;

}
}

If a default argument is omitted in the call, the compiler
"automagically" inserts the default value in the call.

DateType dDate(2,29); // Feb 29, 1980
DateType eDate(3); // March 1, 1980
DateType fDate(); // Jan 1, 1980

Omitted arguments in the call must be the rightmost arguments.
DateType dDate(,29); // error

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

252. Intro ADTs

Intro Data Structures & SE

Default Argument Values
Usage

Default Arguments in prototypes
– Omitted arguments in the function prototype must be the

rightmost arguments.

Default Arguments - Guidelines
– Default arguments are specified in the first

declaration/definition of the function, (i.e. the prototype).
– Default argument values should be specified with

constants.
– In the parameter list in function declarations, all default

arguments must be the rightmost arguments.
– In calls to functions with > 1 default argument, all

arguments following the first (omitted) default argument
must also be omitted.

Default Arguments and Constructors
– Default argument constructors can replace the need for

multiple constructors.
– Default argument constructors can ensure that no object

will be created in an non-initialized state.
– Constructors with completely defaulted parameter lists,

(can be invoked with no arguments), becomes the class
default constructor, (of which there can be only one).

// add to DateType class declarations:
DateType::DateType

(int aMonth=1, int aDay, int aYear=IBMPC);
// error

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

262. Intro ADTs

Intro Data Structures & SE

Inline Member FNs

Class declaration inline functions
– inline functions should be placed in header files to allow

compiler to generate the function copies.

– Member functions defined in a class declaration are
implicitly inlined.

– Efficiency is traded off at the expense of violating the
information hiding by allowing the class clients to see the
implementation.

– Reference to the class data members by the inline
functions before their actual definition is perfectly
acceptable due to the class scoping.

– To avoid confusion, the private members can be defined
first in the class or the inline functions can be explicitly
defined after the class declaration, (but in the header file).

– Changing a header file containing an inline function will
result in recompilation of all files including the header.

class DateType {
public:

void Initialize(int newMonth, int newDay,
int newYear);

int YearIs () const {return Year;};
int MonthIs () const {return Month;};
int DayIs () const {return Day;};

private:
int Year, Month, Day;

};

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

272. Intro ADTs

Intro Data Structures & SE

Structure Charts with Classes

To reflect the use of classes in your modular structure
chart, do the following:

First, create a class form for each of your classes:

double Real
double Imaginary

Data
Members:

Modulus()
returns the modulus (magnitude) of the number

Reporters:

setReal(double x)
assigns Real the value x

setImag(double y)
assigns Imaginary the value y

Operations
Mutators:

Complex()
constructs 0.0 + 0.0i
Complex(double x, double y)
constructs x + yi

Constructors:

To provide a means of representing and manipulating
complex numbers

Purpose:

Complex (this is an extension of the example on slide
3.14)

Name:

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

282. Intro ADTs

Intro Data Structures & SE

Structure Charts with Classes

Second, in the function boxes in the modular structure
chart, indicate if a call is to a member function of an object
by using the class name and the scope resolution operator.
Show the invoking object, (an implicit parameter) as an
input parameter if the member function is a reporter const
member function. Otherwise, show the invoking object as
an output or input/output parameter:

Cplx2 cSize

Complex::Modulus()

Here, the return value is being assigned to a variable named
cSize in the calling function.

Note: usage of the name of the class and the name of the
object.

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

292. Intro ADTs

Intro Data Structures & SE

Inventory Class: Declaration

Example of a simple data class of inventory records.
// *********** INVENTORY CLASS DECLARATION ************

class InvItem {
private:
string SKU; //StocK Unit #: KEY FIELD
string Description; //Item Details
int Retail; //Selling Price
int Cost; //Store Purchase Price
int Floor; //Number of Items on display
int Warehouse; //Number of Items in stock

public:
InvItem(); //default constructor
InvItem(const string& iSKU, //parameter constructor

const string& iDescription,
int iRetail,
int iCost,
int iFloor,
int iWarehouse);

//Reporter Member Functions
string getSKU() const;
string getDescription() const;
int getRetail() const;
int getCost() const;
int getFloor() const;
int getWarehouse() const;

//Mutator Member Functions
void setDescription(const string& descript);
void setRetail(int customer);
void setCost (int actual);
void setFloor (int display);
void setWarehouse(int stock);

}; // class InvItem

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

302. Intro ADTs

Intro Data Structures & SE

Inventory Class: Constructors

//-------------- Constructor Functions ------------------

///
// Default Constructor for InvItem Class
//
// Parameters: none
// Pre: none
// Post: InvItem object has been initialized
//
InvItem::InvItem() {

SKU = "?";
Description = "?";
Retail = -1;
Cost = -1;
Floor = -1;
Warehouse = -1;

} // end InvItem()

//?///
// Parameter Constructor for InvItem Class
//
// Parameters: InvItemRec
// Pre: none
// Post: InvItem object has been set
//
InvItem::InvItem(const string& iSKU,

const string& iDescription,
int iRetail,
int iCost,
int iFloor,
int iWarehouse) {

SKU = iSKU;
Description = iDescription;
Retail = iRetail;
Cost = iCost;
Floor = iFloor;
Warehouse = iWarehouse;

} // end InvItem()

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

312. Intro ADTs

Intro Data Structures & SE

Inventory Class: Reporters

//-------------- Reporter Functions ------------------
// Fn Headers omitted for space

string InvItem::getSKU() const {

return(SKU);

} // end getSKU()

string InvItem::getDescription() const {

return(Description);

} // end getDescription()

int InvItem::getRetail() const {

return(Retail);

} // end getRetail()

int InvItem::getCost() const {

return(Cost);

} // end getCost()

int InvItem::getFloor() const {

return(Floor);

} // end getFloor()

int InvItem::getWarehouse() const {

return(Warehouse);

} // end getWarehouse()

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

322. Intro ADTs

Intro Data Structures & SE

Inventory Class: Mutators

//-------------- Mutator Functions ------------------
// Fn Headers omitted for space

void InvItem::setDescription(const string& descript) {

Description = descript;

} // end setDescription(const string descript)

void InvItem::setRetail(int customer) {

Retail = customer;

} // end setRetail(int customer) {

void InvItem::setCost(int actual) {

Cost = actual;

} // end setCost(int actual)

void InvItem::setFloor(int display) {

Floor = display;

} // end setFloor(int display)

void InvItem::setWarehouse(int stock) {

Warehouse = stock;

} // end setWarehouse(int stock)

Note: the class contains no mutator
function for the SKU member. The
SKU member is the primary/key field
and thus is considered inviolate.

