
Computer Science Dept Va Tech Aug., 2001 ©2001 McQuain WD

1A14. NewStyle C++ Headers

Intro Data Structures & SE

New-Style C++: a Beginning

Old- versus New-Style Header Files
Header File Content Gotchas
New Implementation Gotchas
Why??
How??
Namespaces and “using”
Namespaces and Standard Headers
What does this buy you?

Computer Science Dept Va Tech Aug., 2001 ©2001 McQuain WD

2A14. NewStyle C++ Headers

Intro Data Structures & SE

Old- versus New-Style Header Files

The adoption of the C++ Standard officially brought a number of changes to the language.
One of the most visible was the creation of a new set of header files (largely motivated by
the adoption of the namespace mechanism).

A C++ programmer is now confronted with two sets of standard header files, related by a
naming convention, and with a host of similarities and differences:

Old style:

iostream.h

fstream.h

string.h

math.h

stdlib.h

New style:

iostream

fstream

string

cmath

cstdlib

In general, old-style C++ header files are replaced by new-style headers whose names
omit the “.h” suffix. Some headers, such as math.h, were inherited from the C language.
In those cases, the new-style headers prefix a “c” to the name and omit the “.h”.

Computer Science Dept Va Tech Aug., 2001 ©2001 McQuain WD

3A14. NewStyle C++ Headers

Intro Data Structures & SE

Header File Content Gotchas

In general, the corresponding old- and new-style header files declare more-or-less the
same types and serve the same purpose. However, there are a number of important
exceptions. A sampling:

iostream

same type names, but some
subtle differences in
implementation

iostream.h

standard stream stuff

fstream

file stream stuff; does

NOT include iostream.h

fstream.h

file stream stuff;

includes iostream.h

string

string object library

string.h

C-style char arrays

Do not make the mistake of assuming that this is a complete list of the issues.

Computer Science Dept Va Tech Aug., 2001 ©2001 McQuain WD

4A14. NewStyle C++ Headers

Intro Data Structures & SE

New Implementation Gotchas

There are also implementation differences (improvements, really!) that can cause
problems. For instance:

// Example: fstream gotcha
#include <fstream>
using namespace std;

void printHeader(ofstream Out);

void main() {

ofstream oFile("dump.txt");
printHeader(oFile);
oFile.close();

}

void printHeader(ofstream Out) {

Out << "header" << endl;
}

This program will cause a runtime
exception, after writing to the output
file and after closing the stream.

The reason is a deadly combination:

• Out is passed by value

• no deep copy constructor is
provided for the ofstream class

The error does not occur when using
the old-style header files. Evidently,
this is because there is a deficiency in
the old-style destructor for
ofstream objects.

Moral: ALWAYS pass stream objects by reference.

Computer Science Dept Va Tech Aug., 2001 ©2001 McQuain WD

5A14. NewStyle C++ Headers

Intro Data Structures & SE

Why??

Who are we to question the 9-year deliberations of the C++ Standards Committee?

Seriously, it doesn’t matter. The fact is that we have to deal with the situation as it is.

A few observations:

• The new-style headers offer enhanced functionality.

• There are some S/E advantages incorporated into the new-style implementation.

• Therefore, use the new-style approach whenever possible.

• Never, ever, mix old- and new-style headers in the same compilation unit. If
possible don’t mix them in the same program.

Computer Science Dept Va Tech Aug., 2001 ©2001 McQuain WD

6A14. NewStyle C++ Headers

Intro Data Structures & SE

How??

Two differences are immediately obvious:

#include <fstream>

using namespace std;

void main() {
int anInt;
ifstream inStream;
ofstream outStream;
inStream.open(“infile.dat”);
outStream.open(“outfile.dat”);

inStream >> anInt;
while (inStream) {

outStream << anInt << endl;
inStream >> anInt;

}

inStream.close();
outStream.close();

}

header file name
omits “.h”

“using directive” makes it
possible to refer to the
identifiers declared in the
header file.

Computer Science Dept Va Tech Aug., 2001 ©2001 McQuain WD

7A14. NewStyle C++ Headers

Intro Data Structures & SE

Namespaces and “using”

A namespace is a scope with a name attached. That is:

A namespace may contain declarations
and/or definitions. The elements of a
namespace can only be accessed by using
one of several syntactic structures:

namespace FooSpace {

typedef struct {
string Message;
int Target;

} Foo;
const int MaxFoo = 1000;
int numFoo;
Foo List[MaxFoo];

};

. . .
cout << FooSpace::numFoo;
. . .

using FooSpace::numFoo;
cout << numFoo;
cout << List[0].Message;Error. List[] is not declared in

the present scope.

using namespace FooSpace;
cout << numFoo;
cout << List[0].Message;

Computer Science Dept Va Tech Aug., 2001 ©2001 McQuain WD

8A14. NewStyle C++ Headers

Intro Data Structures & SE

Namespaces and Standard Headers

The new-style C++ header files are all wrapped in a single namespace, called std:

// foobar
#ifndef FOOBAR
#define FOOBAR
namespace std {
// declarations

}
#endif

Namespaces may be composed; that is, two
with the same name are automatically
concatenated by the preprocessor.

So it’s not enough to #include the right header files; you also must make appropriate use
of “using”. For now, just apply a using directive as shown before.

What about the old-style headers?

They didn’t escape:

// foobar.h
#ifndef FOOBAR_H
#define FOOBAR_H
namespace std {
// declarations

}
using namespace std;
#endif

Computer Science Dept Va Tech Aug., 2001 ©2001 McQuain WD

9A14. NewStyle C++ Headers

Intro Data Structures & SE

What does this buy you?

Probably not much just yet. However, Stroustrup suggests the following approach:

Ideally, every entity in a program belongs to some recognizable logical unit
(“module”). Therefore, every declaration in a nontrivial program should
ideally be in some namespace named to indicate its logical role in the
program. The exception is main(), which must be global in order for the
run-time environment to recognize it as special.

In fact, global scope is itself considered a namespace, with no name (!). An undisciplined
programmer can refer to a global identifier by prefixing the scope-resolution operator (::)
to it even if there’s a local declaration of the same name:

int Stupid = 0;
void F() {
int Stupid = 10;
cout << Stupid; // local
cout << ::Stupid; // global

}

Hint: you could wrap all those tempting globals into a namespace to protect them.

