
Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

1A07. Sins

Intro Data Structures & SE

Programming Correctness & Sins

Program Testing and Correctness

An error-free program is almost never obtained on the first try.
Programming is just too complicated a process for that to happen often. For a
careful and competent programmer the probability of each possible error is very
small, but there are so many opportunities that the probability of avoiding all
errors is also very small. Prudence demands that we assume each new program is
incorrect until we can demonstrate otherwise. We must accept the fact that
testing is an integral part of the programming process - and that a program is not
really "finished" until we have demonstrated its correctness.

The magnitude of the testing effort required for large problems might
surprise you. Often at least half the manpower, cost and elapsed time of the total
programming process is consumed in testing. In spite of this, the results are often
not entirely satisfactory. Consequently, computers are not held in high public
esteem for their reliability, when in fact they are exceedingly reliable machines -
handicapped by inadequate programs.

Few beginning programmers take the trouble to learn to test programs
efficiently. To plan testing in advance seems to be admitting inadequacy, so most
beginners assume an ostrich-like, head-in-the-sand attitude. When it is obvious
that something is wrong, they test in a haphazard manner. But testing does not
have to be as time-consuming and unpleasant as many make it seem; effective
testing is a skill that must be studied and learned.

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

2A07. Sins

Intro Data Structures & SE

Programming Correctness & Sins

The Meaning of Correctness

"Program correctness" is not easily defined. The programmer and user of a
program may interpret "correctness" quite differently and hence have
different expectations of program performance. Various interpretations of
correctness are listed below in order of increasing difficulty of
achievement:

1. The program contains no syntax errors that can be detected during
translation by the language processor.

2. The program contains no errors, either of syntax or invalid operation, that
can be automatically detected during translation or execution of the
program.

3. There exists some set of test data for which the program will yield the
correct answer.

4. For a typical (reasonable or random) set of test data the program will yield
the correct answer.

5. For deliberately difficult sets of test data the program will yield the correct
answers.

6. For all possible sets of data that are valid with respect to the problem
specification, the program yields the correct answers.

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

3A07. Sins

Intro Data Structures & SE

Programming Correctness & Sins

7. For all possible sets of valid test data, and for all likely conditions of
erroneous input, the program gives a correct (or at least

reasonable) answer.

8. For all possible input, the program gives correct or reasonable
answers.

In the early stages of your programming experience you will feel harassed
by error messages and feel a sense of relief and accomplishment when none
appear. Later you will understand that the real work of testing starts after the
error messages have been eliminated. The absence of error messages is only a
necessary and not a sufficient condition for reasonable correctness.

Some programmers never mature beyond level 3 in their attitude toward
correctness. Considering, however, the higher levels (say 4, 5 or 6), it is clear that
satisfactory performance on any single set of test data is not sufficient grounds for
an assertion of correctness. Moreover, failure on a single test is sufficient to
demonstrate that the program is not correct. No matter how many tests the
program may have passed successfully, just one test on which it fails is enough to
show that it is not correct. This is not inherently a democractic process, and a
program that works "most of the time" is a dangerous tool.

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

4A07. Sins

Intro Data Structures & SE

Programming Correctness & Sins

From the user's point of view a reasonable definition of correctness is
certainly not less than level 6. Level 7 is better and level 8 is what he would
really like. The programmer may maintain that a literal interpretation of problem
specifications cannot demand more than level 6, while the user will maintain that
certain implied requirements do not have to be explicitly stated. However, the
primary responsibility rests with the programmer. A program is incorrect if it
does not serve the user's purpose.

In summary, the situation is the following. The user would like to have
level 8 correctness - but this is often unrealistic. Level 7 is a reasonable
compromise, which is obviously going to lead to arguments since it leaves critical
questions open to varying interpretations. The programmer's dilemma is that
level 5 is the highest that can be achieved by purely empirical means - by running
the program on test cases - so he must thoughtfully design test cases that permit a
plausible assertion that level 6 has been achieved. To achieve level 7 the
programmer must know enough about the intended use of the program to estimate
what errors are likely to be encountered, and what response is appropriate.

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

5A07. Sins

Intro Data Structures & SE

Programming Correctness & Sins

The Deadly Sins of Programming

Debugging the program instead of the algorithm

a) Failing to use incremental program development methods
b) Attempting to validate more imperative statements than is

intellectually feasible
c) Exceeding one page for a logical module

Insufficient, pre-prepared documentation

a) Insufficient comments in the program
b) Comments that explain the program rather than the methods
c) Lack of coordination between the documentation, the design

and the program (i.e. lack of common keys or keywords)

Using an inappropriate language

a) Not conforming to the Standard
b) Choosing the wrong language for the particular solution

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

6A07. Sins

Intro Data Structures & SE

Programming Correctness & Sins

Poor use of identifiers

a) Using global (common) variables
b) Failing to protect non-used non-local variables
c) Relying on side effects
d) Not clearly distinguishing between input and output variables

in a module

Poor Use of Functions

a) Using internal functions when external functions are
available

b) Using the same parameters for both input and output
c) Using constants as arguments in a function invocation

Relying on default conditions

a) Insufficient explicit declarations
b) Assuming the existence of initial values
c) Using mixed mode expressions with default conversions

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

7A07. Sins

Intro Data Structures & SE

Programming Correctness & Sins

Insufficient verification assertions at critical points

a) Failing to provide sufficient redundancy for validation of
program properties

b) Relying on the correctness of other programs or run-time
routines

Not paying attention to input operations

a) Failing to echo the input data into the output file
b) Destroying the original data values
c) No domain checks on input data values
d) No recovery procedures for invalid input data

Not believing that output matters

a) Not providing a banner/heading giving program
identification, author and version data

b) Too much output
c) Insufficient data identification
d) Giving numbers rather than diagrams

