
Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

1A06. Prog Style

Intro Data Structures & SE

Elements of Programming Style

Introduction

These notes provide guidelines for internal program documentation and style. Although they
are intended for student programmers, style skills will carry over into professional life after
school. In fact, most professional programmers would consider these standards to be less
than minimum requirements for commercial-quality software documentation. While geared
mainly for a block structured language such as Pascal or C, most of the points discussed are
applicable to any programming language. We will not address the ``how'' of program
specification, design, or testing; these topics are the domain of the Computer Science
curriculum.

The essence of good programming style is communication. Good style in programming is
roughly as difficult to learn as good style in English. In both cases, the document has no
value if it does not convey its meaning to the reader. Any program that will be used must be
maintained by somebody - and that somebody must be able to understand the code by
reading it. Any program that needs debugging will be easier to debug if the creator carefully
explains what's going on.

Within the program text, programmers have three primary tools for communicating their
intentions: comments (explanation for theprogram); clear variable names, constants,
expressions and subroutines (the words of the program itself); and white space and
alignment (the organization of the words in the program). Each of these aspects aid
communication between the program writer and the program reader (which includes the
program writer at debug time - so you as a program writer have a stake in good style too!).

I would advise anybody who expects to spend a lot of time at a keyboard to become a
proficient typist, and learn the touch-typing method. If you never had a typing class in high
school, there are many books available that will let you teach yourself.

Students who are poor typists may feel that adding comments to their program will increase
the time spent when writing a program. Those students will quickly find that typing is the
easiest part of programming. Finding and fixing syntax errors also becomes quite easy after
a little practice, since the compiler gives you at least a clue as to how and where you went
wrong. The time consuming part for many programmers is debugging. When you debug a
program, you switch from being a program writer to being a program reader. This is where
good style and commenting can save you many hours of hardship. The rules of
programming style outlined here were developed by programmers who learned the hard way
that using good style is a self-defense measure that minimizes bugs.

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

2A06. Prog Style

Intro Data Structures & SE

Elements of Programming Style
General Guidelines

The most useful things to know about program documentation are ``what'' and ``when''. In
general, you should include comments explaining what every subroutine does, what every
variable does, and an explanation for every tricky expression or section of code. But, there is
much to good style beyond comments, as we shall see. ``When'' is easy - comment it before
you write it. Whenever you declare a variable, include a comment. Whenever you start to
write a subroutine, first write a comment explaining it. That will help to make clear in your
mind what you are about to do. If you find the explanation for a subroutine difficult to write,
its a sure sign that you have done a poor job of structuring the program. Avoid obscure
programming language constructs and reliance on language-specific precedence rules. It is
often better to force precedence by use of parentheses since this leaves no doubt as to
meaning. In general, if you had to look up some rule or definition, your readers most likely
will too. Whenever you do write a difficult expression, or some other tricky business, if you
found it difficult to write you should expect that it will be difficult to understand. So, add a
comment.

The most important rule of style is: be consistent! If you adopt some method for variable
naming or indenting, stick to it throughout your program.

The Program Header
All programs should include, at or near the beginning of the program, a comment block with
at least the following information: the programmer's name and appropriate identification, the
date of writing (and possibly dates and purpose of major modifications), the name of the
program, the computer and operating system for which it was written. Include information
about compiling the program (i.e., the compile line commands). Also include a ``usage'' line
showing how the program is called and the various command line arguments. The bulk of
the program header will often be a description of the program. This serves as a roadmap that
others can follow in order to understand the program. At a minimum, include an explanation
of how the program works, and the major data structures and algorithms used. If you have
more than one module, they should each contain a program header block describing the
workings of that module. If you know about any bugs in your program, it is a good idea to
include a comment in the program header explaining what they are. You might also want to
keep a running ``TODO'' list in the program header comment. If you keep a header block
``template'' available, you can easily copy this template into your program when you begin.
An example program header block in Pascal might look as follows:

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

3A06. Prog Style

Intro Data Structures & SE

Elements of Programming Style

//
// PROGRAM NAME - threshold
//
// PROGRAMMER - A. Hacker, 001-00-2001
//
// USAGE:
// threshold <image-file> <num-rows> <num-cols> <thresh-value>
// where <image-file> contains an image array of size
// <num-rows> X <num-cols>, and <thresh-value> is the
// desired pixel threshold value.
//
// COMPILER - MS Visual C++ v6.0a
//
// SYSTEM –Pentium III running Win NT 4.0 Workstation
//
// DATE - Started 1/19/2000
// Phase I completed 1/30/2000
//
// BUGS - Program crashes if the number of bytes in
// <image-file> is less than <num-rows> X <num-cols>.
//
// DESCRIPTION - This program counts the number of pixels in an
// image (represented by an array) whose value
// is greater than a specified threshold.
//

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

4A06. Prog Style

Intro Data Structures & SE

Elements of Programming Style
Subroutine Documentation
The subroutines of a program (or module) define the structure of that program. Good
program structure can be viewed as a business hierarchy: the president (main routine)
delegates tasks to the next level of workers, who in turn delegate subtasks to their
underlings. Each subroutine should have one clearly defined task. Writing the comment
describing that task before writing the subroutine can help to keep you straight here.
Subroutines should be short enough so that their full meaning can be grasped as a unit by the
reader.

Normally, one page of code represents the limit of intellectual complexity that a reader can
grasp.

Every subroutine should be preceded by a comment describing the purpose and use of that
subroutine. Similar to the program header, each subroutine should have a comment block
with standard sections such as subroutine name, parameters, description, and calling
routines. Some programmers like to surround the entire comment block by asterisks to set it
off. I don't recommend this practice, nor putting comment braces at the beginning and end of
each line in the comment block. While doing so will make the program more attractive, this
practice also makes it difficult to modify the comment block - and your documentation
should be easy to maintain! Speaking of maintenance, if you decide to modify a subroutine
during program development, be sure to modify the comments as well to keep them
accurate.

Below is an example of a subroutine comment header block. Note that this example
indicates in the header the purpose of each parameter to the routine, and what is returned.
//
// Function CountBigPix
// PURPOSE: counts and returns the number of pixels
// in image (of size rows X cols) with value greater
// than thresh.
// PARAMETERS:
// image: pixel array containing the image data
// rows, cols: the number of rows and columns for image
// thresh: the pixel threshold value - count pixels
// greater than this
//
// CALLED BY: main
// CALLS: none
// PRE: Image holds pixel data for a Rows X Cols image
// POST: none
//
int CountBigPix(PixArray Image, int Rows, int Cols,

int Thresh) { . . .

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

5A06. Prog Style

Intro Data Structures & SE

Elements of Programming Style

One of the greatest sources of bugs is in the interface between subroutines. It is a common
mistake to have type mismatches between the formal parameters and the actual parameters.
It is also common to mis-order parameters, or to leave some out. You should always be
scrupulous in checking for such problems when writing your program, and you should
always check these early on when debugging. One way to minimize the problem is to keep
the number of parameters to any one subroutine at a minimum. Seven or more parameters
for a subroutine is probably too many - having this many parameters is a good indication
that you have structured your program in the wrong way, or that you need to reconsider the
global flow of information within your program. One way to reduce the number of
parameters is to group logically connected data into a single parameter through the use of
records and structures. For example, if you have a program that uses coordinate points, it
probably makes more sense to group the coordinate's and values into a single record,
instead of passing two separate pieces of information to a subroutine. It is also a good idea
to adopt a standard ordering, such as all parameters supplying information to the subroutine
appearing before parameters returning information from the subroutine.

Limit the number of parameters passed by reference (var parameters in Pascal, pointers
passed in C). There are only two ways that a subroutine can screw up a variable in another
subroutine: global variables and variables passed such that they can be changed. The
problem in both cases is that you increase the chance that something will be changed in a
way that you didn't expect. By definition (since you didn't expect it), this is hard to debug. If
your subroutine does change a global variable or formal parameter, you should document
this in the subroutine header comment.

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

6A06. Prog Style

Intro Data Structures & SE

Elements of Programming Style

There are two classes of subroutines: functions and procedures. Functions should affect
precisely one value - the function's return value. This means that functions should change no
global variables, nor should they have parameters passed by reference (sometimes you use
call-by-reference to avoid duplicating space, but if you do this in a function, be careful not
to change the parameter's value). If more than one value is to be returned (or a global
variable is changed), use a procedure. Following this policy guarantees that subroutines
declared as functions are relatively safe - they can return the wrong value, but they can't
cause any other damage. In C all subroutines are technically functions. Use the void type to
indicate ``procedure-like'' (i.e., dangerous) subroutines. You may have noticed that many C
standard functions such as read and write are really procedures that appear to violate this
rule. It is customary in C for procedures to return a value that has a special meaning: it
indicates the status of the procedure's operation - i.e., whether the operation was successful
or not.

Indentation and White Space
You should notice that in the code examples I take care to skip spaces or line things up in a
special way. Adding ``white space'' in this way makes your program much more readable.
At least two blank lines should separate your subroutines. It is good to put additional blank
lines at appropriate places within subroutines to separate major sections, such as to separate
declarations from the beginning of the statements. You can also use blank lines to separate
logical sections of the subroutine code.

A new level of indentation should be used at every level of statement nesting in your
program. The amount of indentation is up to the programmer - there are many different
styles. Commonly, programmers will indent a fixed number of spaces at each level. More
spaces make the indentation clearer, but they also limit the amount of information on a line
after several levels of indentation. The minimum number of spaces at each indentation
should be 3, and many programmers use a tab mark (typically 8 spaces). The other common
style of indentation is based on the keyword. For example, a for loop would indent one more
character than an if statement.

Where should the begin go? Some programmers put it at the end of the control statement,
others put it on the next line. Here are some examples.

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

7A06. Prog Style

Intro Data Structures & SE

Elements of Programming Style

if (x < 0)
x = 0; // 3 spaces fixed indentation style

else {
while (x > 0) { // opening brace on same line as while

P(x);
x = x - 1;

} // end while (x > 0)
} // end else

if (x < 0)
x = 0; // indentation matches keyword length style

else
{

while (x > 0)
{

P(x);
x = x - 1;

} // end while (x > 0)
y = y + 1;

} // end else

Nested if-then-else statements are often treated differently, to avoid too much indentation.

if <expression1> {
<statements>

}
else if <expression2> {

<statements>
}
else {

<statements>
}

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

8A06. Prog Style

Intro Data Structures & SE

Elements of Programming Style

Often there are ``pretty-printing'' utilities available to programmers that automatically indent
programs. For C programmers under UNIX, both the utility cb and the EMACS text editor
provide automatic indenting.

You should not put more than one statement on the same line. Also, it is good practice to
keep lines to less than 80 characters. Lines longer than this should be broken into multiple
lines, and indented so as to line things up in a logical way, such as:

average = (image[x-1][y-1] + image[x][y-1] + image[x+1][y-1] +

image[x-1][y] + image[x][y] + image[x+1][y] +

image[x-1][y+1] + image[x][y+1] + image[x+1][y+1]) / 9;

Identifiers
Pick identifiers (i.e., names for variables, functions, records, etc.) that communicate the
named object's purpose to the reader. You also want to pick identifiers in such a way that a
mistake when typing will not likely result in another identifier used within your program. In
this way, a typo will be caught as an error by the compiler (undeclared variable) instead of
resulting in a difficult to find ``logic'' error.

In general, one character identifiers are bad since they violate both of these rules. The
variable names o and p are not usually very informative, and a mistyped o can easy become
a p. However, in two cases it is traditional to use one letter variable names. In certain
mathematical expressions it is appropriate to use traditional variable names such as x or y. It
is also appropriate to use i, j and k for loop variables and array indices - but for no other
purpose!

Many programming languages (such as Pascal and C) allow for arbitrarily long identifiers.
Be careful here, since some compilers will only use the first six or eight characters to
distinguish between names.

There are a number of rules for good use of variables. An easy one to follow is: never
change the value of a loop variable within that loop. In other words, don't do the following:

for (int i = 1; i <= 10; i++) {

i = i + 1;

}

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

9A06. Prog Style

Intro Data Structures & SE

Elements of Programming Style
This is an instance of a general principle for variable use: don't overload the logical meaning
of a variable. By using i as the loop variable, the programmer is signaling to the reader
something about i. By assigning to the variable, a second meaning is introduced. The
program is easier to understand if a second variable is assigned to and used.

Use variables at the smallest possible level of scope. One implication of this rule is that you
should minimize the use of global variables. There is a place in good programming style for
global variables, and that is for a body of knowledge that will be acted on by many sections
of the program, and which is in some sense the major essence of that program. Don't use
global variables as a convenient means to communicate between two subroutines.

Be consistent about the use of local variables with the same name throughout the program. If
``i'' is used as a loop variable in one subroutine, don't use it as something else in another
subroutine.

Depending on the programming language, the compiler may or may not distinguish upper
and lower case letters. However, a reader certainly can distinguish the difference, and
mixing cases correctly can give the reader additional clues about a name. You should adopt
a standard usage for case. One suggestion is to have all constants entirely in upper case, all
created types (typedefs, records, structures) with only the first letter upper case, and all
variables entirely in lower case. Another is to avoid the use of purely lower case identifiers
in C/C++, to avoid possible collisions with the language keywords. It is also informative if
you use common suffixes and prefixes for related variables, such as inFile, outFile,
errorFile. Beware that 0 and 1 look a lot like O and l.

Every variable in your program should have a comment describing its use. Typically, this
comment appears at the end of the line containing the variable declaration. You should
avoid declaring more than one variable on the same line unless all variables on that line
have very similar use. Here is an example of variable declarations in Pascal.

PixArray Image; // The image buffer

int Rows, Cols; // Number of rows and columns

int i, j; // Current row and column

int Thresh; // Threshold: count bigger pixels

int BigPixCount; // Total number of pixels in image

// array greater than thresh

Since Pascal and ANSI C subroutine definitions do not have a section for formal parameter
definitions other than the function header definition line, you need to find another place to
document the purpose of the formal parameters. A good idea is to include this in the
subroutine header comment, as in the example above.

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

10A06. Prog Style

Intro Data Structures & SE

Elements of Programming Style

Constants and Enumerated Types

When you type a mathematical expression such as val = 7*x + 2, the numbers 7 and 2 are
truly numbers. However, most programmers only rarely use true numbers. More likely, they
are dealing with numbers that are logical quantities, such as the size of a disk block (1024)
or Monday (day 1 in the week). Of great importance (but often neglected by weaker
programmers) is the use of constants and enumerated types, both of which are supported by
Pascal, C, and most other languages in some form. Constants allow the programmer to give
a name to a number. In this way, the meaning of the number can be captured in the constant
name, thus providing more information to the reader. Another advantage is that it is easy to
change the value of the constant - you only need to change it at the definition.

Enumerated types allow the programmer to declare a variable with a limited range of values.
These values can be numeric, or arbitrary strings. For example, if you want a variable to
store a day of the week, instead of storing an integer value of 1 for Monday, you can store
the more meaningful value ``Monday''. Program status variables (i.e., state variables) and
case statement indices should never be integer values. They should always have logical
names, defined either through constants or enumerated types. You should carefully consider
every number that you type in your code, and substitute a name for it unless you have a good
reason not to do so.

The more that you limit the possible values for a variable (through the use of range and
enumerated types), the less chance for error. Range and enumerated types also give error
checking compilers a chance to work in your favor, as well as supplying more information
to the reader.

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

11A06. Prog Style

Intro Data Structures & SE

Elements of Programming Style
Records, Structures, Types and Typedefs

The most difficult part in writing many programs is defining the various record types
(structures and unions in C). This is because the record definitions define the data structures
for the program. You should give special care to naming both the record and its subfields,
even more care than to naming single variables. Below is a Pascal example using records
and enumerated types. Even without comments, the intention should be pretty clear. Note
that I gave the record field the ``good'' name at the expense of the name for the range and
enumerated types, since the field name will be used a lot within the program code.

enum WeekdayType {Mon, Tue, Wed, Thur, Fri, Sat, Sun};

enum MonthType {Jan, Feb, Mar, Apr, May, Jun,

Jul, Aug, Sep, Oct, Nov, Dec};

typedef struct {

MonthType month;

int day;

WeekdayType weekday;

int year;

} Date;

Block Statements
Block statements (the group of statements within a begin-end pair in Pascal or between
braces in C) deserve a comment. This comment should indicate what is happening in the
block, such as the action for each pass through the loop, or what action is being executed in
the else part of an if statement. In addition, at the end of the block, a comment should
indicate what block is being closed. Here is an example in C.

while (listptr != NULL)

{ /* sum all values on the list */

total += listptr->value;

listptr = listptr->next;

} /* while (listptr != NULL) */

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

12A06. Prog Style

Intro Data Structures & SE

Elements of Programming Style
Goto Statements

There are few good uses for a goto statement. It is not uncommon for the class instructor to
ban goto statements altogether. The traditional legitimate use for a goto is to allow the
programmer to escape from deep nesting when a special case (usually an error) has been
encountered. For Pascal programmers, this means that, on rare occasion, you may want to
``goto'' the end of a subroutine in order to exit. For C/C++ programmers, such a goto is
never justified since you can return from any point in a subroutine, and the keywords break
and continue allow you to break out of a loop. FORTRAN programs may use goto's to
simulate while statements, or C-style break and continue statements.

If you should ever feel the need to use a goto statement, you should comment the reason
thoroughly in the program!

Final Remarks
Despite all that was written above, remember that terseness is a virtue. A smaller body of
words is easier to comprehend. When documenting a program, say only what needs to be
said without leaving important things out. For example, the following comment is not
informative:

count = count + 1; // Increase count by 1

Beginners will have difficulty deciding what can safely be left out. So, beginners should err
on the side of completeness.

This document will be updated from time to time. If you have any suggestions for how it
may be improved, please tell the lab staff or bring it to the attention of Dr. Shaffer.

