
CS 1704 Intro to Data Structures & Software Eng.

Deep Copy

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

14. Deep Copy

Intro Data Structures & SE

Deep Copy

Slides

1. Table of Contents
2. Assignment of Structs
3. Dynamic Content
4. Shallow Copying
5. Assignment Operator
6. Deep Assignment Copy
7. Assignment Problems
8. Assignment Problems 2
9. this Pointer
10. … Improved Deep Copy
11. Passing an Object
12. Passing Objects by Value
13. Passing Value Objects Results
14. Copy Constructors
15. Initialization
16. Moral

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

24. Deep Copy

Intro Data Structures & SE

The default assignment operation simply copies values of the field
members from the “source” struct into the corresponding field
members of the “target” struct .

This is satisfactory
in many cases:

However, if an struct contains a pointer to dynamically allocated
memory, the result of the default assignment operation is usually
not desirable…

Assignment of Structs

A default member field assignment operation is provided for struct
variables:

struct EmailAcct {
string ID, Host;

};

void main() {
EmailAcct A;
A.ID = "hokie" ;
A.Host = "vt.edu";
EmailAcct B;

B = A; // copies the field members of A into B
}

A

ID: hokie
Host: vt.edu

B

ID: hokie
Host: vt.edu

CS 1704 Intro to Data Structures & Software Eng.

Deep Copy

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

34. Deep Copy

Intro Data Structures & SE

Dynamic Content

Consider the EmailAddr struct below:

const int MAXALIAS = 3;

struct EmailAddr {
EmailAcct PID;
string* aliases;

};

EmailAddr email;
email.PID.ID = "hokie";
email.PID.Host = "vt.edu";
email.aliases = new string[MAXALIAS];

The aliases array is
not a field member of
the struct email.

email
aliases

PID

ID: hokie
Host: vt.edu

“” “” “”

Hmmm…

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

44. Deep Copy

Intro Data Structures & SE

Shallow Copying

Now, suppose we declare another EmailAddr struct variable and
assign the original one to it:
EmailAddr emailCopy;

emailCopy = email;

emailCopy does not get a new
copy of the aliases array.

It just gets a copy of the
aliases pointer from email.

So both EmailAddr structs
share the same dynamic data.

Here’s what results:

This is almost certainly
NOT what was desired
when the code above was
written.

This is known as making
a “shallow copy” of the
source struct.

email
aliases

PID

ID: hokie
Host: vt.edu

“” “” “”
emailCopy
aliases

PID

ID: hokie
Host: vt.edu

#%&#&$!

There is no good solution for this
problem of assigning structs that
contain dynamic memory.

The same problem occurs with C++
class objects, however the language
provides an elegant solution.

CS 1704 Intro to Data Structures & Software Eng.

Deep Copy

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

54. Deep Copy

Intro Data Structures & SE

Assignment Operator

class EmailAcct {
private:
string ID, Host;

public:
EmailAcct();
EmailAcct(string ID2, string Host2);
// . . .
Print(ostream& out);

};

const int MAXALIAS = 3;

class EmailAddr {
private:
EmailAcct PID;
string* aliases;

public:
EmailAddr();
EmailAddr(string ID2, string Host2);
~EmailAddr();
EmailAddr& operator=(const EmailAddr& Eaddr);
// . . .
EmailAcct getPID();
string* getAliases();
};

When a class object contains a pointer to dynamically allocated
data, we generally will want the assignment operation to create a
complete duplicate of the “source” object. This is known as
making a “deep copy”.

In order to do this, you must provide your own implementation of
the assignment operator for the class in question:

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

64. Deep Copy

Intro Data Structures & SE

Deep Assignment Copy
In your own implementation of the overloaded assignment
operator you must include code to handle the “deep” copy logic.

Here’s a first attempt:

EmailAddr& EmailAddr ::operator=(const EmailAddr& Eaddr) {

PID = Eaddr.PID; // assign non-dynamic members
aliases = NULL; // don’t copy pointer
aliases = new string[MAXALIAS]; // allocate array copy

for (int i=0; i < MAXALIAS; i++) // copy array cells
aliases[i] = Eaddr.aliases[i];

//return ?
}

The above code contains some insidious logic problems.

CS 1704 Intro to Data Structures & Software Eng.

Deep Copy

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

74. Deep Copy

Intro Data Structures & SE

Assignment Problems

Assigning existing objects:

email
aliases

PID

ID: hokie
Host: vt.edu

“bird” “turk” “gob”

joe
aliases

PID

ID: jhokie
Host: vt.edu

“joe” “bob” “jbob”

Assigning:
joe = email;

Results in:

joe
aliases

PID

ID: hokie
Host: vt.edu

“joe” “bob” “jbob”

“bird” “turk” “gob”

Memory Leak (garbage)

The “target” object may already be
initialized and since the first attempt
code doesn’t attempt to delete its
array, memory will be “orphaned”

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

84. Deep Copy

Intro Data Structures & SE

Assignment Problems 2

Self Assignment:
email = email;

email
aliases

PID

ID: hokie
Host: vt.edu “bird” “turk” “gob”

Results in a logic error. The implicit object and Eaddr are
referencing the same object. Delete deallocates the same array that
is then accessed in the for loop.

Second attempt:
EmailAddr& EmailAddr::operator=(const EmailAddr& Eaddr) {

PID = Eaddr.PID; // assign non-dynamic members
delete [] aliases; // delete existing array
aliases = new string[MAXALIAS]; // allocate array copy

for (int i=0; i < MAXALIAS; i++) // copy array cells
aliases[i] = Eaddr.aliases[i];

//return ?
}

“” “” “”

Deallocated

CS 1704 Intro to Data Structures & Software Eng.

Deep Copy

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

94. Deep Copy

Intro Data Structures & SE

this Pointer
Special Object Pointer: “this”
Every object contains a language supplied implicitly defined
hidden pointer to itself termed “this” which contains the address
of the object.

• Used when an object needs to refer to itself as whole, not just
individual data members).

• The “this” pointer is not explicitly part of the object,
(i. e. not counted in the sizeof() the object).

• Every member function receives the this pointer as an
implicit parameter

• It is used implicitly to access an object’s members whenever a
member is directly referenced.

• It can however be used explicitly to indirectly access an
object’s members.

• The type of the “this” pointer is dependent upon the type of
the object to which it refers.

• For a non-const member function of class X, the type of
the “this” pointer is:

X * const this; // a const pointer
// this is never explicitly defined or assigned

• For a const member function of class X, the type of the
“this” pointer is:

const X * const this;
//a const pointer to a const object

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

104. Deep Copy

Intro Data Structures & SE

…Improved Deep Copy

Here’s a somewhat improved version:

By returning a reference to an object, a member function allows
chaining of the the operations. e.g.,

EmailAddr joe, bob;
bob = joe = email;

EmailAddr& EmailAddr::operator=(const EmailAddr& Eaddr) {
if (this != & Eaddr) { // self-assignment?
PID = Eaddr.PID; // assign non-dynamic members
delete [] aliases; // delete existing array
aliases = new string[MAXALIAS]; // allocate array copy

for (int i=0; i < MAXALIAS; i++) // copy array cells
aliases[i] = Eaddr.aliases[i];

}
return(*this);

}

Note: in the above example in all EmailAddr objects, allocated
aliases array never changes size, once allocated during
execution. Thus the aliases array would not need to be deleted
and re-allocated. Its cells could be used to hold the copied strings.

However, if any two objects of the EmailAddr class contained
different sized arrays the above approach would need to be
implemented.

//Not the following
joe.=(email);
bob.=(joe);

CS 1704 Intro to Data Structures & Software Eng.

Deep Copy

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

114. Deep Copy

Intro Data Structures & SE

Passing an Object
When an object is used as an actual parameter in a function call,
the distinction between shallow and deep copying can cause
seemingly mysterious problems.

void PrintAddrs(EmailAddr mail, ostream& Out) {

Out << "Email address: " << endl;
mail.getPID().Print(Out);
Out << "Email Aliases: " << endl;
string* eAliases = mail.getAliases();
for (int i=0; i < MAXALIAS; i++)

Out << eAliases[i] << endl;
}

Note that the EmailAddr parameter mail is not passed by
constant reference, but by value. However, that will cause a new
problem.

When an object is passed by value, the actual parameter must be
copied to the formal parameter (which is a local variable in the
called function).

This copying is managed by using a special class constructor,
called a copy constructor. By default this involves a member by
member shallow copy. That means that if the actual parameter
involves dynamically allocated data, then the formal parameter
will share that data rather than have its own copy of it.

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

124. Deep Copy

Intro Data Structures & SE

Passing Objects by Value

In this case:

What happens when PrintAddrs(email); is called?
First, a local variable mail is created and the data members of
email are copied into mail , resulting in the situation shown
above.

email
aliases

PID

ID: hokie
Host: vt.edu

mail
aliases

PID

ID: hokie
Host: vt.edu

“bird” “turk” “gob”

Hmmm…

void PrintAddrs(EmailAddr mail, ostream& Out) {

Out << "Email address: " << endl;
mail.getPID().Print(Out);
Out << "Email Aliases: " << endl;
string* eAliases = mail.getAliases();
for (int i=0; i < MAXALIAS; i++)

Out << eAliases[i] << endl;
}

CS 1704 Intro to Data Structures & Software Eng.

Deep Copy

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

134. Deep Copy

Intro Data Structures & SE

Passing Value Objects Results

But of course, that’s the same array that email has created. So,
when execution returns to main(), email will have lost its
array, but email.aliases will still point to that deallocated
memory, (dangling pointer).

Havoc will ensue.

When PrintAddrs() terminates, the lifetime of mail comes to
an end and its destructor is automatically invoked:

Destructing mail causes
the deallocation of the
aliases array to which
mail.aliases points.

#%&#&$!

email
aliases

PID

ID: hokie
Host: vt.edu

mail
aliases

PID

ID: hokie
Host: vt.edu

“bird” “turk” “gob”

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

144. Deep Copy

Intro Data Structures & SE

Copy Constructors
There are several solutions to this problem:
• always pass objects by reference
• force a deep copy to be made when pass by value is used

The first option is undesirable since it raises the risk of undesired
modification of the actual parameter.

The second option can be achieved by providing a user-defined
copy constructor for the class, and implementing a deep copy.

When a user-defined copy constructor is available, it is used when
an actual parameter is copied to a formal parameter.

EmailAddr::EmailAddr(const EmailAddr& Source) {
PID = Source.PID; // assign non-dynamic members
aliases = new string[MAXALIAS]; // allocate array copy

for (int i=0; i < MAXALIAS; i++) // copy array cells
aliases[i] = Source.aliases[i];

}

The copy constructor takes an object of the relevant type as a
parameter (constant reference must be used). Implement a deep
copy in the body of the copy constructor and the problem
described on the previous slides is solved.

CS 1704 Intro to Data Structures & Software Eng.

Deep Copy

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

154. Deep Copy

Intro Data Structures & SE

Initialization
When an object is declared, it may be initialized with the value of
an existing object (of the same type):

void main3() {
EmailAddr email; // default construction
// code to store data into email
// . . .

EmailAddr UserEmail = email; // initialization
}

Technically initialization is different from assignment since here
we know that the “target” object does not yet store any defined
values.

Although it looks like an assignment, the initialization shown here
is accomplished by the copy constructor.

If there is no user-defined copy constructor, the default (shallow)
copy constructor manages the initialization.

If there is a user-defined copy constructor, it will manage the
copying as the user wishes.

Copy constructors also execute when an object is returned by
value from a function:

object x = getObject(obj);

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

164. Deep Copy

Intro Data Structures & SE

Moral
When implementing a class that involves dynamic allocation, if
there is any chance that:

• objects of that type will be passed as parameters, or
• objects of that type will be used in initializations, or
• objects of that type will be returned by value

then your implementation should include a copy constructor that
provides a proper deep copy.

If there is any chance that:

• objects of that type will be used in assignments

then your implementation should include an overloaded
assignment operator that provides a proper deep copy.

This provides relatively cheap insurance against some very nasty
behavior.

