

Laws of Logarithms

Let $\mathrm{b}>0$, and let $\mathrm{x}>0$. Then the logarithm of x to base b is the power to which b must be raised in order to get x. That is:

$$
y=\log _{b}(x) \quad \text { if, and only if, } \quad x=b^{y}
$$

Let $\mathrm{A}>0$ and $\mathrm{B}>0$ and N be an integer. If no base is shown, then the rule holds for any base.
$\log (A B)=\log (A)+\log (B)$
L1: \log of a product
$\log \left(\frac{A}{B}\right)=\log (A)-\log (B)$
L2: \log of a quotient
$\log \left(A^{N}\right)=N \log (A)$
L3: \log of a power
$\log (1)=0$
L4: \log of 1
$\log _{b}\left(b^{N}\right)=N$
L5: log of power of base
$\log _{b}(x)=\frac{\log _{a}(x)}{\log _{a}(b)}$ for any $\mathbf{b}>0$ and $\mathbf{a}>0$
L6: change of base

