
CS 1704 Project 4 DRAFT Fall 2002

 Page 1 of 10

Linked Structures: Process Management Simulation

The purpose of this assignment is to demonstrate your ability to design and implement linked structures to store and
manage data elements, and to implement data elements that have substantial dynamic content. This project requires
blending and modifying the first and third projects to achieve a fairly interesting simulation of a process management
system.

The system will use a doubly-linked list to store process control blocks (PCBs) similar to those from the first project, but
adding a call stack. The underlying physical structure for the call stack must be a singly-linked list.

As before, the stack must be encapsulated within a class, and provide a general interface suitable to a stack. In addition, the
doubly-linked list must also be encapsulated within a class, and must also provide a general interface suitable to a list. That
is, neither the stack nor the linked list should make use of any specialized interface details of the objects that are stored
within them.

The PCBs must also be implemented as a class, again with a suitable interface. Since the PCB will encapsulate the stack of
activation records, the PCB will have to provide some interface elements to provide for managing function calls, local
variable updates, and function returns. Of course, that means that the PCB will also use the activation record interface.

The activation record must also be implemented as a class. Ideally, you will be able to use the activation record class from
the previous project without modification.

There is a significant organizational change for the process list; now the process priority becomes important. When a
context switch is carried out, the command will specify the priority of the next process to be moved to the run state.
Logically, you might think of it as if you have a collection of process lists, one for each possible priority. (To simplify that,
we will guarantee that priorities will range from 0 to 4.) Thus, you might have an array of process queues, each reserved
for a particular priority, or have a single process queue, which may (or may not) keep the PCBs in order of priority.

Script file:

This project will involve only one input file, containing the commands that are to be processed. The script file will contain
a sequence of commands, one per line. Most of the commands are precisely the same as for projects one and three, but the
specifications of all commands are repeated here for clarity. The two sort commands from project one have been
eliminated; so have the display and clear commands from project three.

start<tab><process name><tab><priority><newline>

Create a PCB for the process and append it to the relevant process queue. The system assigns a unique process
identifier (PID); the PID is just a nonnegative integer, corresponding to the sequence in which the processes are
created, starting with zero.

kill<tab><PID><newline>

Search for a PCB storing the given PID. If one is found, remove the PCB. Note the PCB may be in the run state
or on the process queue; deletion may leave either of those empty. (There's no automatic context switch.)

switch<tab><priority><newline>

If there is no process with the specified priority in the process queue this has no effect. Otherwise, the first PCB
with that priority in the process queue is moved to the run state and the running process is moved to the end of the
relevant process queue.

ps<tab>[all | PID]<newline>

If the parameter is all, log all the existing processes, showing the process name, PID, and current state
(RUNNING or ELIGIBLE), and the process priority. The running process, if any, should be logged first, followed
by the processes in the process queue, ranked in order of priority. If the parameter is a PID, locate the PCB for the
specified process and log it as described above.

CS 1704 Project 4 DRAFT Fall 2002

 Page 2 of 10

call<tab><fn name><tab><# of parameters><tab><values of parameters><tab>
<# of locals><tab><values of locals><newline>
Create an activation record for the function and push it onto the run-time stack. Log a message recording the
initiation of the call.

return<tab><newline>

Pop an activation record off of the run-time stack. If stack is empty when this command is encountered, terminate
the relevant process immediately. If the stack is empty immediately after this command is processed, terminate
the relevant process immediately. Log a message recording the termination of the function, and the process if that
occurs.

set<tab><position><tab><value><newline>

Set the value of the specified local variable to the given value. The position corresponds to the order in which the
local variables are stored; they are numbered starting at one. If there is no such local variable, then log an error
message, and terminate the process.

exit<tab><newline>
 Immediately stop reading the script and exit the program.

Legend:

 process name
 fn name a character string, containing no tabs, with no more than 20 characters
 priority a non-negative integer value; higher values indicate greater priority
 PID a non-negative integer value identifying a process, assigned upon process creation
 # of parameters a non-negative integer value
 # of locals a non-negative integer value
 values of parameters a tab-separated list of the specified number of integer values
 values of locals a tab-separated list of the specified number of integer values
 position a positive integer value possibly identifying a local variable
 value an integer value

As a general rule, every command you process should result in a logged message, either confirming the command was
carried out or indicating that an error occurred. There is no limit on the number of commands that may be given. Your
program should be designed to stop when an input failure is reached. There is a sample script file at the end of this
specification.

Log file:

Your program will write all of its output to a log file. The contents of the log file should be similar to the previous
projects. However, because this project will not be auto-graded, you now have considerable leeway in formatting and
setting text for the feedback messages. The earlier requirements for logging information still apply. There is a sample log
file at the end of this specification.

You must echo the names of the script and log files at the beginning of the log. To aid in examining your log output, you
must number the commands (starting at 1).

Program invocation:

Your program will normally be invoked from the command line environment. Assuming your executable file is called
ProcessManager.exe, it would be invoked as follows:

 ProcessManager <script file name> <log file name>

CS 1704 Project 4 DRAFT Fall 2002

 Page 3 of 10

You should check for existence of the named script file, and terminate execution with an informative message if the file is
not found.

Evaluation:

Your submitted program will be evaluated by one of the TAs, at a demo, which you will schedule. Details about
scheduling the demos will be announced later. The TA will also be evaluating your implementation for correctness of
operation, as well as for design quality and documentation.

Your implementation must meet the following requirements:

� Choose descriptive identifiers when you declare a variable or constant. Avoid choosing identifiers that are entirely

lower-case.
� Use named constants instead of literal constants when the constant has logical significance.
� Use C++ streams for input and output, not C-style constructs.
� Use C++ string variables to hold character data, not C-style character pointers or arrays.
� In the procedural part of your implementation, you must make appropriate use of functions.
� None of your functions can include more than 30 executable statements. An executable statement is one that

causes something to happen. Comments, constant and variable declarations (even if they initialize) do not count as
executable statements.

� When you pass an array to one of your functions, use pass by constant reference unless pass by reference is
logically necessary. (Remember that for array parameters, pass by reference is the default.)

� You must use dynamic allocation as described in this specification.
� The process control blocks and activation records must be implemented as classes.
� The stack must be implemented as a C++ class, and the underlying structure must be a singly-linked list.

Templates are banned, including all STL containers.
� The process list(s) must be implemented as a class, and the underlying structure must be a doubly-linked list.
� Each class must be implemented using a header file containing the class declaration and an associated source file

containing the implementations of the class functions.
� Any class that allocates memory dynamically must include a destructor to deallocate that memory, and a copy

constructor and assignment operator to provide correct deep copy support. (This might include all of your
classes.)

Read the Programming Standards page on the CS 1704 website for general guidelines. You should comment your code in
some detail. In particular:

� You should have a header comment identifying yourself, and describing what the program does.
� Every constant and variable you declare should have a comment explaining its logical significance in the program.
� Every major block of code should have a comment describing its purpose.
� Every function implementation must have a header comment. The format of the header comment is described in

the course notes, as well as on the Programming Standards page on the course website.
� Every class declaration must have a header comment, describing the purpose of the class and anything a client

would need to know about the limitations of the class.
� Adopt a consistent indentation style and stick to it.

Understand that the list of requirements here is not a complete repetition of the Programming Standards page on the course
website. It is possible that requirements listed there will be applied, even if they are not listed here.

Submitting your program:

You will submit this assignment, as a standard zipped archive, to the Curator System (read the Student Guide). Do not use
any other format for the archive file. However, this assignment will not be graded automatically. Follow the instructions
on the website for submitting projects that are not auto-graded. Be sure to note that more than just your source files are
required, and be sure to not submit any extra files.

CS 1704 Project 4 DRAFT Fall 2002

 Page 4 of 10

You will be allowed up to three submissions for this assignment. Only one should be necessary, but this will allow you a
chance to fix errors you may find after making your first submission.

The Student Guide and submission link can be found at: http://www.cs.vt.edu/curator/
Pledge:

Each of your program submissions must be pledged to conform to the Honor Code requirements for this course.
Specifically, you must include the pledge statement provided on the course website in the header comment for your
program.

Failure to include the pledge statement may result in a substantial grade penalty.

Sample input script:

; PCB List Script file
;
; Load some processes:
start P01 0
ps 0
start P02 3
start P03 0
;
; Check the status of the jobs:
ps all
;
; Put a job into the run state:
switch 0
;
; Verify:
ps all
;
; Call some functions:
call main 0 3 1 2 3
call F01 1 2 2 3 5
;call F02 3 1 2 3 0
ps 0
set 1 100
ps 0
;
; Do a context switch and verify:
switch 0
ps all
;
; Some calls:
call main 0 1 1
call G01 0 0
call G02 1 3 2 1 2
ps 2
;
; Another context switch:
switch 0
;
; Try a function return:
return
ps 0
;

CS 1704 Project 4 DRAFT Fall 2002

 Page 5 of 10

; And now terminate main():
return
ps 0
;
; And finally try a return with no running process:
return
;
; Verify process list:
ps all
;
; Add another process:
start P04 2
ps 3
;
; Run another process:
switch 3
call main 0 0
ps 1
;
; Try a switch w/o a candidate process to
; move to run state:
switch 3
ps all
;
; Kill one and verify:
kill 2
kill 0
ps all
;
switch 1
;
; Shut down:
exit

CS 1704 Project 4 DRAFT Fall 2002

 Page 6 of 10

Sample log:

Programmer: Bill McQuain
CS 1704: Process Management Simulation

Script file: 1.Script.txt
Log file: 1.Log.txt
--
Command 1: start P01 0
Process 0 added.
--
Command 2: ps 0
P01 PID: 0 Priority: 0
--
Command 3: start P02 3
Process 1 added.
--
Command 4: start P03 0
Process 2 added.
--
Command 5: ps all
Processes with priority 0:
P01 PID: 0 Priority: 0
P03 PID: 2 Priority: 0

Processes with priority 1:

Processes with priority 2:

Processes with priority 3:
P02 PID: 1 Priority: 3

Processes with priority 4:

--
Command 6: switch 0
Process 0 now in run mode.
--
Command 7: ps all
Running process:
P01 PID: 0 Priority: 0
Call stack:
 Stack is empty.

Processes with priority 0:
P03 PID: 2 Priority: 0

Processes with priority 1:

Processes with priority 2:

Processes with priority 3:
P02 PID: 1 Priority: 3

Processes with priority 4:

CS 1704 Project 4 DRAFT Fall 2002

 Page 7 of 10

--
Command 8: call main 0 3 1 2 3
Call to main initiated.
--
Command 9: call F01 1 2 2 3 5
Call to F01 initiated.
--
Command 10: ps 0
P01 PID: 0 Priority: 0
Call stack:
 Function: F01
 Parameters: 2
 Locals: 3 5

 Function: main
 Parameters:
 Locals: 1 2 3

--
Command 11: set 1 100
--
Command 12: ps 0
P01 PID: 0 Priority: 0
Call stack:
 Function: F01
 Parameters: 2
 Locals: 100 5

 Function: main
 Parameters:
 Locals: 1 2 3

--
Command 13: switch 0
Process 2 now in run mode.
--
Command 14: ps all
Running process:
P03 PID: 2 Priority: 0
Call stack:
 Stack is empty.

Processes with priority 0:
P01 PID: 0 Priority: 0

Processes with priority 1:

Processes with priority 2:

Processes with priority 3:
P02 PID: 1 Priority: 3

Processes with priority 4:

--

CS 1704 Project 4 DRAFT Fall 2002

 Page 8 of 10

Command 15: call main 0 1 1
Call to main initiated.
--
Command 16: call G01 0 0
Call to G01 initiated.
--
Command 17: call G02 1 3 2 1 2
Call to G02 initiated.
--
Command 18: ps 2
P03 PID: 2 Priority: 0
Call stack:
 Function: G02
 Parameters: 3
 Locals: 1 2

 Function: G01
 Parameters:
 Locals:

 Function: main
 Parameters:
 Locals: 1

--
Command 19: switch 0
Process 0 now in run mode.
--
Command 20: return
Function F01 terminated for process P01
--
Command 21: ps 0
P01 PID: 0 Priority: 0
Call stack:
 Function: main
 Parameters:
 Locals: 1 2 3

--
Command 22: return
main terminated for process P01
--
Command 23: ps 0
Process not found.
--
Command 24: return
There is no running process.
--

CS 1704 Project 4 DRAFT Fall 2002

 Page 9 of 10

Command 25: ps all
Processes with priority 0:
P03 PID: 2 Priority: 0

Processes with priority 1:

Processes with priority 2:

Processes with priority 3:
P02 PID: 1 Priority: 3

Processes with priority 4:

--
Command 26: start P04 2
Process 3 added.
--
Command 27: ps 3
P04 PID: 3 Priority: 2
--
Command 28: switch 3
Process 1 now in run mode.
--
Command 29: call main 0 0
Call to main initiated.
--
Command 30: ps 1
P02 PID: 1 Priority: 3
Call stack:
 Function: main
 Parameters:
 Locals:

--
Command 31: switch 3
No eligible processes.
--
Command 32: ps all
Running process:
P02 PID: 1 Priority: 3
Call stack:
 Function: main
 Parameters:
 Locals:

Processes with priority 0:
P03 PID: 2 Priority: 0

Processes with priority 1:

Processes with priority 2:
P04 PID: 3 Priority: 2

Processes with priority 3:

CS 1704 Project 4 DRAFT Fall 2002

 Page 10 of 10

Processes with priority 4:

--
Command 33: kill 2
Process 2 removed.
--
Command 34: kill 0
Process not found: 0
--
Command 35: ps all
Running process:
P02 PID: 1 Priority: 3
Call stack:
 Function: main
 Parameters:
 Locals:

Processes with priority 0:

Processes with priority 1:

Processes with priority 2:
P04 PID: 3 Priority: 2

Processes with priority 3:

Processes with priority 4:

--
Command 36: switch 1
No eligible processes.
--
Command 37: exit
Exiting script execution.
--

