
CS 1704 Intro to Data Structures & Software Eng.

Algorithm Analysis

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

112. Alg Analysis

Intro Data Structures & SE

Intro to Algorithm Analysis

Slides

1. Table of Contents
2. Analysis Metrics
3. Exact Analysis Rules
4. Simple Summation
5. Summation Formulas
6. Order of Magnitude
7. Big-O Notation
8. Big-O Theorems
9. Complexity Classes
10. Practical Complexity Classes
11. Big-O Simple Summation
12. Big-O Analysis Rules
13. Big-O Array Summation
14. Array Summation (exact count)
15. Practical Applications
16. Hardware Speedup
17. Algorithm Behavior

Algorithm Analysis == Complexity Analysis

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

212. Alg Analysis

Intro Data Structures & SE

Analysis Metrics

Program Running (Execution) Time Factors
– Machine Speed (not just CPU speed)
– Programming Language and Implementation
– Compiler Code Generation (optimization)
– Input Data Size
– Time Complexity of Algorithm

† Number of executed statements: T(n)
† Function of the size of the input (termed n)

Running Time Factor Implications
– Compiler code generation & processor speed differences are too

great to be used as a basis for impartial algorithm comparisons.
– Overall system load may cause inconsistent timing results, even if

the same compiler and hardware are used.
– Hardware characteristics, such as the amount of physical memory

and the speed of virtual memory, can dominate timing results.
– In any case, those factors are irrelevant to the complexity of the

algorithm.

CS 1704 Intro to Data Structures & Software Eng.

Algorithm Analysis

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

312. Alg Analysis

Intro Data Structures & SE

Exact Analysis Rules
When attempting an exact time analysis:

1. We assume an arbitrary time unit.
2. Running of each of the following operations takes time T(1):

a) assignment operations
b) I/O operations
c) Boolean operations
d) arithmetic operations
e) function return

3. Running time of a selection statement (if, switch) is the time for
the condition evaluation + the maximum of the running times for
the individual clauses in the selection.

4. Loop execution time is the time for the loop setup (initialization
& setup) + the sum, (over the number of times the loop is
executed), of the body time + time for the loop check and update
operations. (Loop setup will include the termination check on
pre-test loops.)
†Always assume that the loop executes the maximum number of
iterations possible

5. Running time of a function call is T(1) for setup + the time for
any parameter calculations + the time required for the execution
of the function body.

Non-executable statements, (e.g., declarations), are not
counted. Only executable statements are analyzed.

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

412. Alg Analysis

Intro Data Structures & SE

Simple Summation

† Outer loop will execute n -1 times -- this is the external sum.
† Inner loop will execute i times -- this is the internal sum.

So, the total time T(n) is given by:

For ease of
summation
count loop
repetitions
starting at 1.

For ease of
summation
count loop
repetitions
starting at 1.

for (i = 0; i < n-1; i++) {

for (j = 0; j < i; j++) {
aray[i][j] = 0;

}
}

for (i = 0; i < n-1; i++) {

for (j = 0; j < i; j++) {

aray[i][j] = 0;
}

}

Rules 4 and
2a: time 1
before loop

Rules 4, 2c and 2d: time 3
on each iteration of outer
loop

Rules 4, 2c and 2d: time 2
(on each iteration of inner
loop)Rules

4 and
2a:
time 1
on
each
iter. of
outer
loop

Rule 2a: time 1 on
each pass of inner
loop

Given:

∑ ∑
−

= =








++=

1

1 1
353)(

n

i

i

j
nT

Summation from
applying Rule 4
to inner loop

Summation from
applying Rule 4
to outer loop

Rules 4 &
2a: time 2
before loop

Rules 4 &
2a: time 1
before loop

CS 1704 Intro to Data Structures & Software Eng.

Algorithm Analysis

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

512. Alg Analysis

Intro Data Structures & SE

Summation Formulas

The summation formulas above can be used to evaluate the
expressions obtained when analyzing the complexity of an
algorithm:

Let N > 0, let A, B, and C be constants, and let f and g be any
functions. Then:

()

() ()

2
2
7

2
3

2
))(1(3)1(53

353

353

353)(

2

1

1

1

1

1

1

1

1 1

−+=

−
+−+=

++=

++=









++=

∑∑

∑

∑ ∑

−

=

−

=

−

=

−

= =

nn

nnn

i

i

nT

n

i

n

i

n

i

n

i

i

j

2
)1(

1

+
=∑

=

NNk
N

k

NCC
N

k

=∑
=1 6

)12)(1(
1

2 ++
=∑

=

NNNk
N

k

∑∑
==

=
N

k

N

k

kfCkCf
11

)()(∑∑∑
===

±=±
N

k

N

k

N

k

kgkfkgkf
111

)()())()((

S1: factor out constant S2: separate summed terms

S3: sum of constant S4: sum of k S5: sum of k squared

From analysis on previous slide.

Apply S3 to the inner sum.

Apply S2 and S1 to the outer sum.

Apply S3 to the first sum, and

apply S4 to the second sum.

Simplify and combine terms.

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

612. Alg Analysis

Intro Data Structures & SE

Function Estimation
Given an algorithm that takes time: f(n) = 3n2 + 5n + 100

Graphically:

Algebraically:

So 5n2 forms an “upper bound” on f(n) if n is 10 or larger (asymptotic
bound). In other words, f(n) doesn't grow any faster than 5n2 “in the
long run”.

0

2000

4000

6000

8000

10000

12000

14000

1 5 9 13 17 21 25 29 33 37 41 45 49

n (input size)

tim
e

f(n)
n 2̂
5n 2̂

Order of Magnitude

If n > 10 then n2 > 100
If n > 5 then n2 > 5n
Therefore, if n > 10 then:
f(n) = 3n2 + 5n + 100 < 3n2 + n2 + n2 = 5n2

CS 1704 Intro to Data Structures & Software Eng.

Algorithm Analysis

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

712. Alg Analysis

Intro Data Structures & SE

Big-O notation is used to express the asymptotic growth rate of a
function.

– Formally suppose that f(n) and g(n) are functions of n. Then we say
that f(n) is in O(g(n)) provided that there are constants C > 0 and N
> 0 such that for all n > N then f(n) < Cg(n).

– We often say that “f is big-O of g” or that “f is in O(g)”.
– By the definition above, demonstrating that a function f is big-O of

a function g requires that we find specific constants C and N for
which the inequality holds (and show that the inequality does, in
fact, hold).

Example: from the previous slide, if n > 10 then

f(n) = 3n2 + 5n + 100 < 5n2

So, by the definition above, f(n) is in O(n2).

Note that 5n2 < 9n2 (for all n), so we could also conclude that f(n)
is O(9n2). Usually, we’re interested in the tightest (smallest) upper
bound, so we’d prefer 5n2 to 9n2.

Big-O Notation

C = 5

N = 10

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

812. Alg Analysis

Intro Data Structures & SE

Big-O Theorems

The analysis given on slide 4 of this chapter is typical of big-O analysis,
and is somewhat tricky. In order to simplify our work, we state the
following theorems about big-O:

Assume that f(n) is a function of n and that K is an arbitrary constant.

Thm 1: K is O(1)
Thm 2: A polynomial is O(the term containing the highest power of n)
Thm 3: K*f(n) is O(f(n)) [i.e., constant coefficients can be dropped]
Thm 4: In general, f(n) is big-O of the dominant term of f(n), where

“dominant” may usually be determined by the following list:

constants
logb(n) [always log base 2 if no base is shown]
n
n logb(n)
n2

n to higher powers
2n

3n

larger constants to the n-th power
n! [n factorial]
nn

Thm 5: For any base b, logb(n) is O(log(n)).

smaller

larger

C
om

pl
ex

ity
 C

la
ss

es

CS 1704 Intro to Data Structures & Software Eng.

Algorithm Analysis

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

912. Alg Analysis

Intro Data Structures & SE

Complexity Classes

Observations
– Algorithms with Order > n2 require FAR more time than algorithms

with Order n2 or less, even for fairly small input sizes.
– For small n, there’s not much practical difference between Order n2

and order log n.

Common Growth Curves

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10 11

n (input size)

log n
n
n log n
n^2
n^3
2^n
10^n

order n2 & less

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

1012. Alg Analysis

Intro Data Structures & SE

Practical Complexity Classes

Observations
– Even for moderately small input sizes, Order n2 algorithms will

require FAR more time than Order n log(n) algorithms.
– constants of proportionality, (coefficients & lesser terms), have

very little effect for large values of n (between complexity classes).
– Large problems with Order > n log(n) cannot practically be

executed
† For n = 1000 (medium problems) n2 algorithms can still be used

Low-order Curves

0

20

40

60

80

100

120

1 3 5 7 9 11 13 15 17 19 21 23

n (input size)

log n

n

n log n

n2

CS 1704 Intro to Data Structures & Software Eng.

Algorithm Analysis

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

1112. Alg Analysis

Intro Data Structures & SE

Big-O Simple Summation

had a total time complexity T(n) is given by (slide 4):

for (i = 0; i < n-1; i++) {

for (j = 0; j < i; j++) {
aray[i][j] = 0;

}
}

Recall:

∑ ∑
−

= =








++=

1

1 1
353)(

n

i

i

j
nT

…and that T(n) reduced to (slide 5): 3
2
7

2
3)(2 −+= nnnT

Now by Theorem 2:

…and then by Theorem 3:







∈ 2

2
3)(nOnT

()2)(nOnT ∈

So we’d say that the given code fragment is of order n2 complexity.

Of course, this involved some unnecessary work. Big-O analysis
provides a gross indication of the complexity of an algorithm, and that
can be obtained without first doing an exact analysis (as we did on
slides 4 and 5 for this code fragment).

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

1212. Alg Analysis

Intro Data Structures & SE

Big-O Analysis Rules
When attempting an approximate big-O time analysis:

1. We assume an arbitrary time unit.
2. Running of each of the following type of statement takes time

T(1): [omitting the arithmetic operators]
a) assignment statement
b) I/O statement
c) Boolean expression evaluation
d) function return

3. Running time of a selection statement (if, switch) is T(1) for the
condition evaluation + the maximum of the running times for the
individual clauses in the selection.

4. Loop execution time is the time for the loop setup (initialization &
setup) + the sum, over the number of times the loop is executed, of
the body time + time for the loop check and update operations.
†Always assume that the loop executes the maximum number of
iterations possible

5. Running time of a function call is T(1) for function
setup + the time required for the execution of the
function body.

6. Running time of a sequence of statements is the largest time of
any statement in the sequence.

indicates changes from the rules for exact analysis stated earlier.

Ignore individual
Boolean operations &
arithmetic operations

Ignore
parameter
computations

CS 1704 Intro to Data Structures & Software Eng.

Algorithm Analysis

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

1312. Alg Analysis

Intro Data Structures & SE

Analysis will deal with the statements labeled a .. h; executable statements only.

Inner Loop: Sum from 0..i (or 1..i+1) of the loop body.
Body Rule 6: Maximum of {loop condition, e, f}

Rule 2: loop condition, e, and f each take 1
So, the inner loop body takes time O(1) and so the inner loop is

Outer Loop: Sum from 0..n (or 1..n+1) of the loop body.
Body Rule 6: Maximum of {loop condition, c, inner loop, g, h}

Rule 2: loop condition, c, g, and h each take time 1
So, the outer loop body takes time O(i) and so the outer loop is

Finally by Rule 6, the big-O complexity of the function is the maximum of the outer
loop and statement 1, which is O(1); so the function is O(n2).

Big-O Array Summation

typedef int rayType[N];

void sumItoN(rayType ray, int n) {
int i, j, t;

i = 0; // a
while (i <= n) { // b (outer loop)

j = t = 0; // c
while (j <= i) { // d (inner loop)

t = t + ray[j]; // e
j++; // f

}
ray[i] = t; // g
i++; // h

}
}

() ()iOiOO
i

j

=+=







∑
+

=

11
1

1

()22
1

1
1

2
3

2
1

2
)2)(1(nOnnOnnOiO

n

i
=






 ++=






 ++

=






∑
+

=

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

1412. Alg Analysis

Intro Data Structures & SE

Analysis will deal with the statements labeled a .. h; executable statements only.

Inner Loop: Sum from 0..i (or 1..i+1) of the loop body.
Body Rule 4: Sum of {loop condition, e, f}

Rule 2: loop condition and f each take time 1; e takes time 2
So, the inner loop body takes time 4 and so the time for the inner loop is

Outer Loop: Sum from 0..n (or 1..n+1) of the loop body.
Body Rule 6: Sum of {loop condition, c, inner loop cond, inner loop, g, h}

Rule 2: loop condition, g, and h each take time 1; c takes time 2
So, the outer loop body takes 4(i+1) + 6 or 4i + 10, and so the outer loop
plus statement a is

Array Summation (exact count)

()144
1

1

+=∑
+

=

i
i

j

() 12162)1(10
2

)2)(1(421042)(2
1

1

++=++
++

+=++= ∑
+

=

nnnnninT
n

i

typedef int rayType[N];

void sumItoN(rayType ray, int n) {
int i, j, t;

i = 0; // a
while (i <= n) { // b (outer loop)

j = t = 0; // c
while (j <= i) { // d (inner loop)

t = t + ray[j]; // e
j++; // f

}
ray[i] = t; // g
i++; // h

}
}

CS 1704 Intro to Data Structures & Software Eng.

Algorithm Analysis

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

1512. Alg Analysis

Intro Data Structures & SE

Practical Applications

Assume:
– 1 day ≈ 100,000 sec. ≈ 105 sec. (actually 86, 400)
– Input size n = 106

– A computer that executes 1,000,000 Inst/sec
† C/C++ statement instructions

Algorithm Complexity Class Comparison

Internal Class Comparisons
– Within complexity classes the differences between

algorithms due to constants of proportionality,
(coefficients & lesser terms), are not significant enough to
warrant reporting except for certain (high usage)
applications (e.g., sorting, searching)

Order: n2

(106)2 Instructions
1012 Instructions
1012 / 106 secs to run
106 secs to run
106 / 105 days to run
10 days to run

Order: n2

(106)2 Instructions
1012 Instructions
1012 / 106 secs to run
106 secs to run
106 / 105 days to run
10 days to run

Order: n log2 n
106 log2 106 Instructions
20 (106) = 2 (107)
2 (107) / 106 secs to run

20 sec to run

Order: n log2 n
106 log2 106 Instructions
20 (106) = 2 (107)
2 (107) / 106 secs to run

20 sec to run

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

1612. Alg Analysis

Intro Data Structures & SE

Hardware Speedup

Does the fact that hardware is always becoming faster
hardware mean that algorithm complexity doesn’t really
matter?

Suppose we could obtain a machine that was capable of
executing 10 times as many instructions per second (so
roughly 10 times faster than the machine hypothesized on
the previous slide).

How long would the order n2 algorithm take on this machine
with an input size of 106?

Order: n2

instructions: (106)2 = 1012

seconds to run: 1012 / 107 = 105

days to run: 105 / 105 = 1

Order: n2

instructions: (106)2 = 1012

seconds to run: 1012 / 107 = 105

days to run: 105 / 105 = 1

Impressed?

You shouldn’t be. That’s still 1 day versus 20 seconds if an
algorithm of order n log(n) were used.

What about 100 times faster hardware? 2.4 hours.

CS 1704 Intro to Data Structures & Software Eng.

Algorithm Analysis

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

1712. Alg Analysis

Intro Data Structures & SE

Algorithm Behavior

Categories
– Algorithms must be examined under different situations to correctly

determine their efficiency for accurate comparisons.

Best Case Analysis
– Assumes the input, data etc. are arranged in the most advantageous

order for the algorithm, i.e. causes the execution of the fewest
number of instructions.

– E.g., sorting - list is already sorted; searching - desired item is
located at first accessed position.

Worst Case Analysis
– Assumes the input, data etc. are arranged in the most

disadvantageous order for the algorithm, i.e. causes the execution of
the largest number of statements.

– E.g., sorting - list is in opposite order; searching - desired item is
located at the last accessed position or is missing.

Average Case Analysis
– Determines the average of the running times over all possible

permutations of the input data.
– E.g., searching - desired item is located at every position, for each

search), or is missing.

Caveats
– Algorithms may have quite different Orders for the analysis

categories, e.g., O(1), O(n2), O(nlogn), respectively.

