Slides 1. Table of Contents 2. Analysis Metrics 3. Exact Analysis Rules 4. Simple Summation 5. Summation Formulas 6. Order of Magnitude 7. Big-O Notation 8. Big-O Theorems 9. Complexity Classes 10. Practical Complexity Classes 11. Big-O Simple Summation	Program Running (Execution) Time Fact - Machine Speed (not just CPU speed) - Programming Language and Implement - Compiler Code Generation (optimization) - Input Data Size - Time Complexity of Algorithm † Number of executed statements: T(n) † Function of the size of the input (termed Running Time Factor Implications - Compiler code generation & processon great to be used as a basis for impartia - Overall system load may cause incons the same compiler and hardware are us - Hardware characteristics, such as the are and the speed of virtual memory, can and
 Big-O Array Summation Array Summation (exact count) Practical Applications Hardware Speedup Algorithm Behavior 	- In any case, those factors are irrelevan algorithm.

12. Alg Analysis 2

©1995-2001 Barnette ND, McQuain WD

٩

ctors

- ntation
- ion)
- ed n)
- r speed differences are too l algorithm comparisons.
- sistent timing results, even if sed.
- amount of physical memory dominate timing results.
- to the complexity of the

Exact Analysis Rules

12. Alg Analysis 3

©1995-2001 Barnette ND, McQuain WD

When attempting an exact time analysis:

- 1. We assume an arbitrary time unit.
- 2. Running of each of the following operations takes time T(1):
 - a) assignment operations
 - b) I/O operations
 - c) Boolean operations
 - d) arithmetic operations
 - e) function return

Computer Science Dept Va Tech Aug., 2001

- 3. Running time of a selection statement (if, switch) is the time for the condition evaluation + the maximum of the running times for the individual clauses in the selection.
- 4. Loop execution time is the time for the loop setup (initialization & setup) + the sum, (over the number of times the loop is executed), of the body time + time for the loop check and update operations. (Loop setup will include the termination check on pre-test loops.)

†Always assume that the loop executes the maximum number of iterations possible

5. Running time of a function call is T(1) for setup + the time for any parameter calculations + the time required for the execution of the function body.

Non-executable statements, (e.g., declarations), are not counted. Only executable statements are analyzed.

Intro Data Structures & SE

<pre>typedef int rayType[N];</pre>	
<pre>void sumItoN(rayType ray,</pre>	int n) {
<pre>i = 0; while (i <= n) { j = t = 0; while (j <= i) { t = t + ray[j]; j++; }</pre>	// a // b (outer loop) // c // d (inner loop) // e // f
i++;	// g // h
A statement of the	d a h; <u>executable</u> statements only. loop body. o condition, e, f} nd f each take 1
alysis will deal with the statements labeled aner Loop: Sum from 0i (or 1i+1) of the Body Rule 6: Maximum of {loop Rule 2: loop condition, e, a So, the inner loop body takes tin $O\left(\sum_{i=1}^{i+1} 1\right) = O(i+1) = O(i)$	d a h; <u>executable</u> statements only. loop body. o condition, e, f} ind f each take 1 me O(1) and so the inner loop is
} nalysis will deal with the statements labele aner Loop: Sum from 0i (or 1i+1) of the Body Rule 6: Maximum of {loop Rule 2: loop condition, e, a So, the inner loop body takes tim $O\left(\sum_{j=1}^{i+1} 1\right) = O(i+1) = O(i)$ uter Loop: Sum from 0n (or 1n+1) of the Body Rule 6: Maximum of {loop Rule 2: loop condition, e, a So, the outer loop body takes tim So, the outer loop body takes tim	d a h; <u>executable</u> statements only. loop body. o condition, e, f} and f each take 1 ne O(1) and so the inner loop is cloop body. o condition, c, inner loop, g, h} g, and h each take time 1 ne O(i) and so the outer loop is
halysis will deal with the statements labeled ner Loop: Sum from 0i (or 1i+1) of the Body Rule 6: Maximum of {loop Rule 2: loop condition, e, a So, the inner loop body takes the $O\left(\sum_{j=1}^{i+1} 1\right) = O(i+1) = O(i)$ uter Loop: Sum from 0n (or 1n+1) of the Body Rule 6: Maximum of {loop Rule 2: loop condition, c, g So, the outer loop body takes the $O\left(\sum_{i=1}^{n+1} i\right) = O\left(\frac{(n+1)(n+1)}{2}\right)$	d a h; <u>executable</u> statements only. loop body. o condition, e, f} ind f each take 1 ne O(1) and so the inner loop is e loop body. o condition, c, inner loop, g, h} g, and h each take time 1 ne O(i) and so the outer loop is $\frac{2}{2} = O\left(\frac{1}{2}n^2 + \frac{3}{2}n + 1\right) = O\left(n^2\right)$

Array Summation (exact count) 12. Alg Analysis 14

Hardware Speedup	12. Alg Analysis 16	
Does the fact that hardware is always becoming faster hardware mean that algorithm complexity doesn't really matter?		
Suppose we could obtain a machine that was capable of executing 10 times as many instructions per second (so roughly 10 times faster than the machine hypothesized on the previous slide).		
How long would the order n^2 algorithm take on this machine with an input size of 10^6 ?		
Order: n^2 # instructions: $(10^6)^2 = 10^{12}$ # seconds to run: $10^{12} / 10^7 = 10^5$ # days to run: $10^5 / 10^5 = 1$		
Impressed?		
You shouldn't be. That's still 1 day versus 20 seconds if an algorithm of order $n \log(n)$ were used.		
What about 100 times faster hardware? 2.4 hours.		
Computer Science Dept Va Tech Aug., 2001 Intro Data Structures & SE	©1995-2001 Barnette ND, McQuain WD	

Algorithm Behavior

12. Alg Analysis 17

Categories

 Algorithms must be examined under different situations to correctly determine their efficiency for accurate comparisons.

Best Case Analysis

- Assumes the input, data etc. are arranged in the most advantageous order for the algorithm, i.e. causes the execution of the fewest number of instructions.
- E.g., sorting list is already sorted; searching desired item is located at first accessed position.

Worst Case Analysis

- Assumes the input, data etc. are arranged in the most disadvantageous order for the algorithm, i.e. causes the execution of the largest number of statements.
- E.g., sorting list is in opposite order; searching desired item is located at the last accessed position or is missing.

Average Case Analysis

- Determines the average of the running times over all possible permutations of the input data.
- E.g., searching desired item is located at every position, for each search), or is missing.

Caveats

- Algorithms may have quite different Orders for the analysis categories, e.g., O(1), O(n²), O(nlogn), respectively.

Computer Science Dept Va Tech Aug., 2001

Intro Data Structures & SE ©1995-2001 Barnette ND, McQuain WD