
CS 1704 Intro to Data Structures & Software Eng.

Copying Objects

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

18. Copying Objects

Intro Data Structures & SE

Copying Objects

Slides

1. Table of Contents
2. Assignment of Objects
3. Dynamic Content
4. Shallow Copying
5. Deep Copying
6. this Pointer
7. … Improved Deep Copy
8. Passing an Object
9. Passing Objects
10. Passing Objects by Value
11. Passing Objects by Value (cont)
12. Copy Constructors
13. Initialization
14. Moral
15. Class vs. Proc. ADT

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

28. Copying Objects

Intro Data Structures & SE

The default assignment operation simply copies values of the data
members from the “source” object into the corresponding data
members of the “target” object.

This is satisfactory
in many cases:

However, if an object contains a pointer to dynamically allocated
memory, the result of the default assignment operation is usually
not desirable…

Assignment of Objects

A default assignment operation is provided for objects (just as for
struct variables):

class Complex {
private:

double Real, Imag;
public:

Complex();
Complex(double RealPart, double ImagPart);
// . . .
double Modulus();

};

Complex A(4.3, 2.9);
Complex B;

B = A; // copies the data members of A into B

A

Real: 4.3

Imag: 2.9

B

Real: 4.3

Imag: 2.9

CS 1704 Intro to Data Structures & Software Eng.

Copying Objects

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

38. Copying Objects

Intro Data Structures & SE

Dynamic Content

Consider the LinkList class discussed earlier:
#include "LinkList.h"

class Integer {
private:

int Data;
public:

Integer(int newData=0);
int getInt();
void setInt(int i);
bool operator==(const Integer& anItem) const;
bool operator<(const Integer& anItem) const;

};
typedef Integer Item;

LinkList myList;

for (int Idx = 4; Idx < -1; Idx--) {
Integer newInteger(Idx);
myList.PrefixNode(newInteger);

}

These nodes are not
data members of the
object myList.

myList

Head

Curr

Tail

0 1 2 3 4 •

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

48. Copying Objects

Intro Data Structures & SE

Shallow Copying

Now, suppose we declare another LinkList object and assign the
original one to it:
LinkList anotherList;

anotherList = myList;

anotherList does
not get a new copy of
the linked list nodes.

It just gets a copy of
the pointers from
myList.

So both LinkList
objects share the same
dynamic data.

Here’s what we get:

This is almost certainly
NOT what was desired
when the code above was
written.

This is known as making
a “shallow copy” of the
source object.

Head

Curr

Tail

anotherList

myList

Head

Curr

Tail

0 1 2 3 4 •

CS 1704 Intro to Data Structures & Software Eng.

Copying Objects

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

58. Copying Objects

Intro Data Structures & SE

Deep Copying
When an object contains a pointer to dynamically allocated data,
we generally will want the assignment operation to create a
complete duplicate of the “source” object. This is known as
making a “deep copy”.

In order to do this, you must provide your own implementation of
the assignment operator for the class in question, and take care of
the “deep” copy logic yourself. Here’s a first attempt:
LinkList& LinkList::operator=(const LinkList& otherList) {

Head = NULL; // don’t copy pointers
Tail = NULL;
Curr = NULL;

LinkNode* myCurr = otherList.Head; //copy head ptr
while (myCurr != NULL) {

Item xferData = myCurr->getData();
if (Head == NULL) //add first node

PrefixNode(xferData);
else { //Append to end of list

Insert(xferData);
Advance();

}//else
myCurr = myCurr->getNext();

} //while
return (*this);

}

This contains some flaws:
the “target” object may already be initialized and this doesn’t
attempt to delete its list, so memory will be “orphaned”
fixing that will potentially cause a problem if an object is
assigned to itself.

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

68. Copying Objects

Intro Data Structures & SE

LinkList& LinkList::operator=(const LinkList& otherList) {

if (this != &otherList) { // self-assignment??

this->~LinkList(); // delete target’s list

Head = Tail = Curr = NULL; // don’t copy pointers

LinkNode* myCurr = otherList.Head; //copy head ptr
while (myCurr != NULL) {

Item xferData = myCurr->getData();
if (Head == NULL) //add first node

PrefixNode(xferData);
else { //Append to end of list

Insert(xferData);
Advance();

}//else
myCurr = myCurr->getNext();

}//while
}//if
return (*this);
}

…Improved Deep Copy

Here’s a somewhat improved version:

By returning a reference to an object, a member function allows
chaining of the the operations. E.g.,

LinkList anotherList, anotherCopy;
anotherCopy = anotherList = myList;

Add = overload function to the LinkList class.

A more precise copy would involve
positioning Curr analogously.

CS 1704 Intro to Data Structures & Software Eng.

Copying Objects

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

78. Copying Objects

Intro Data Structures & SE

Passing an Object
When an object is used as an actual parameter in a function call,
the distinction between shallow and deep copying can cause
seemingly mysterious problems.

void PrintList(LinkList& myList, ostream& Out) {
Item nextValue;
int Count = 0;

Out << "Printing list contents: " << endl;
myList.gotoHead();
if (myList.isEmpty()) {

Out << "List is empty" << endl;
return;

}

while (myList.inList()) {
nextValue = myList.getCurrentData();
Out << setw(3) << ++Count << ": "

<< nextValue.getSKU() << endl;
myList.Advance();

}
Out << endl;

}

This function will print the Name fields of a list of objects,
(assuming the InvItem implementation or something similar for
ItemType).

Note that the LinkList parameter myList is not passed by
constant reference. That would eliminate risking any modification
of the object by the called function. Why is constant reference not
used here?

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

88. Copying Objects

Intro Data Structures & SE

Passing Objects
In the previous example, the object parameter cannot be passed by
constant reference because the called function does change the
object (although not the content of the list itself).

The object myList is passed by reference, which would allow the
called function to modify the actual LinkList object used in the
call.

The advantage of passing by reference is that it eliminates the time
and space required to make a copy of the object (if the object were
passed by value).

However, since constant reference is not an option here, it would
be preferable to eliminate the chance of an unintended
modification of the list and pass the LinkList parameter by
value.

However, that will cause a new problem.

When an object is passed by value, the actual parameter must be
copied to the formal parameter (which is a local variable in the
called function).

This copying is managed by using a special constructor, called a
copy constructor. By default this involves a shallow copy. That
means that if the actual parameter involves dynamically allocated
data, then the formal parameter will share that data rather than
have its own copy of it.

CS 1704 Intro to Data Structures & Software Eng.

Copying Objects

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

98. Copying Objects

Intro Data Structures & SE

Passing Objects by Value

In this case:
// use pass by value:
void PrintList(LinkList myList, ostream& Out) {
// same implementation

}

void main() {
LinkList BigList;
// initialize BigList with some data nodes

PrintList(BigList, cout); // print BigList
}

What happens when PrintList() is called?
First, a local variable myList is created and the data members of
BigList are copied into myList, resulting in the situation
shown above.

BigList

Head

Curr

Tail

•

Head

Curr

Tail

myList

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

108. Copying Objects

Intro Data Structures & SE

Passing Objects by Value

As PrintList() executes, the Curr pointer in myList is
modified and nodes are printed:
void PrintList(LinkList myList, ostream& Out) {

// operations on myList, which is local
}

But of course, that’s the same list that BigList has created. So,
when execution returns to main(), BigList will have lost its
list, but BigList.Head will still point to that deallocated
memory.

Havoc will ensue.

When PrintList() terminates, the lifetime of myList comes
to an end and its destructor is automatically invoked:

BigList

Head

Curr

Tail

•

Head

Curr

Tail

myList

Destructing myList
causes the deallocation
of the list of nodes to
which myList.Head
points.

CS 1704 Intro to Data Structures & Software Eng.

Copying Objects

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

118. Copying Objects

Intro Data Structures & SE

Copy Constructors
There are solutions to this problem:

• always pass objects by reference
• force a deep copy to be made when pass by value is used

The first option is undesirable since it raises the risk of undesired
modification of the actual parameter. The second option can be
achieved by providing a user-defined copy constructor for the
class, and implementing a deep copy. When a user-defined copy
constructor is available, it is used when an actual parameter is
copied to a formal parameter.
LinkList::LinkList(const LinkList& Source) {

Head = Tail = Curr = NULL;

LinkNode* myCurr = Source.Head; // copy list
while (myCurr != NULL) {

Item xferData = myCurr->getData();
if (Head == NULL) //add first node

PrefixNode(xferData);
else { //Append to end of list

Insert(xferData);
Advance();

}//else
myCurr = myCurr->getNext();

}
// add code to logically equate the
// curr pointers for an exact copy
}

The copy constructor takes an object of the relevant type as a
parameter (constant reference must be used). Implement a deep
copy in the body of the copy constructor and the problem
described on the previous slides is solved.

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

128. Copying Objects

Intro Data Structures & SE

Initialization
When an object is declared, it may be initialized with the value of
an existing object (of the same type):

void main() {
LinkList aList; // default construction
// Now throw some nodes into aList
// . . .

LinkList anotherList = aList; // initialization
}

Technically initialization is different from assignment since here
we know that the “target” object does not yet store any defined
values.

Although it looks like an assignment, the initialization shown here
is accomplished by the copy constructor.

If there is no user-defined copy constructor, the default (shallow)
copy constructor manages the initialization.

If there is a user-defined copy constructor, it will manage the
copying as the user wishes.

Copy constructors also execute when an object is returned by a
function as the function return value:

object x = getObject(list);

CS 1704 Intro to Data Structures & Software Eng.

Copying Objects

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

138. Copying Objects

Intro Data Structures & SE

Moral
When implementing a class that involves dynamic allocation, if
there is any chance that:

• objects of that type will be passed as parameters, or
• objects of that type will be used in initializations

then your implementation should include a copy constructor that
provides a proper deep copy.

If there is any chance that:

• objects of that type will be used in assignments

then your implementation should include an overloaded
assignment operator that provides a proper deep copy.

This provides relatively cheap insurance against some very nasty
behavior.

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

148. Copying Objects

Intro Data Structures & SE

Class vs. Proc. ADT

Implementation Comparison

• The List Class ADT achieves complete
encapsulation/information hiding for the type.

• Function operation interfaces are simplified as a
result of the reduced parameter lists, (i.e. the object is
passed implicitly).

• A List Procedural ADT only achieves a certain level of
encapsulation/information hiding .

• Due to more localized code, the List Class implements a
more reusable ADT.

• Automatic initialization by constructors eliminates
error code checking in the Class ADT.

• Modifications and extensions to the List Class ADT are
easier to make.

• Higher-level types based on the List Class ADT can be
built more readily.

