
CS 1704 Intro to Data Structures & Software Eng.

Lined List Classes

Computer Science Dept Va Tech Oct., 2002 ©1995-2002 Barnette ND, McQuain WD

17. LL Class

Intro Data Structures & SE

Linked List Example

This chapter presents a sample implementation of a linked list, encapsulated in a C++
class.

The primary goals of this implementation are:
• to provide a proper separation of functionality.
• to design the list to serve as a container; i.e., the list should be able to store

data elements of any type.

First, a node class, SNode class is used to encapsulate the data and pointers.

Second, a SList class is used to encapsulate a list of SNode objects.

Third, an Item class is used to encapsulate the data and separate it from the pointers
that define the list structure.

The basic view is that each list node provides a data “socket” that is capable of
accepting any type of data element:

N
ext

“Data Socket”

Data
Element

Warning: the SList class given in this chapter is intended for
instructional purposes. The given implementation contains a
number of known flaws, and perhaps some unknown flaws as
well. Caveat emptor.

Computer Science Dept Va Tech Oct., 2002 ©1995-2002 Barnette ND, McQuain WD

27. LL Class

Intro Data Structures & SE

SNode Class
// SNode.h
//
// Singly-linked node class.
//
// Features:
// - Default SNode contains default Item object and
// a NULL pointer.
// - Accessor function getData() returns a reference
// to the stored data element, allowing user editing
// of the data object.
//
// Assumptions:
// - User will supply a header file, Item.h containing
// a typedef statement mapping some real type to
// the name Item used in SNode.
// - That type will provide deep copy support and a
// destructor, if needed.
//
#ifndef SNODE_H
#define SNODE_H

#include "Item.h" // for typedef

class SNode {
private:

Item Element;
SNode *Next;

public:
SNode();
SNode(const Item& E, SNode* N = NULL);

Item& getData();
void setData(const Item& E);
SNode* getNext();
void setNext(SNode* N);

};

#endif

The SNode class neither knows nor cares what an Item variable
is — an SNode is a container.

Why is there no
destructor?

CS 1704 Intro to Data Structures & Software Eng.

Lined List Classes

Computer Science Dept Va Tech Oct., 2002 ©1995-2002 Barnette ND, McQuain WD

37. LL Class

Intro Data Structures & SE

SNode Class Constructors

SNode constructor implementations:
// SNode.cpp
#include <cstdlib> // for NULL
#include "SNode.h" // for declaration of type SNode

// SNode()
// Constructs an empty node, with default data
// element and NULL pointer.
// Parameters: none
// Returns: none
// Calls: none
// Called by: client code
//
SNode::SNode() {

Next = NULL;
}

///////////////////////////////// SNode(Data, Pointer)
// Constructs a node with specified data
// element and pointer.
// Parameters:
// E data value to place in node
// N pointer to next node
// Returns: none
// Calls: none
// Called by: client code
//
SNode::SNode(const Item& E, SNode *N) {

Element = E;
Next = N;

}

Uses default
construction for
Item objects.

When an object is a data member of another object, the data
member is automatically initialized using the default constructor
for its type.

Uses default (or overloaded)
assignment for Item objects.

Computer Science Dept Va Tech Oct., 2002 ©1995-2002 Barnette ND, McQuain WD

47. LL Class

Intro Data Structures & SE

SNode Class Reporters

// getData()
// Provides user access to stored data element.
// Parameters: none
// Returns: reference to node's data element
// Calls: none
// Called by: client code
//
Item& SNode::getData() {

return Element;
}

// getNext()
// Provides user access to pointer to next node.
// Parameters: none
// Returns: pointer to next node
// Calls: none
// Called by: client code
//
SNode* SNode::getNext() const {

return Next;
}

Uses const to
guarantee no
modification occurs.

getData() returns a reference to the data member Element,
not a copy of it.

That allows the user of the SNode object to modify the data
element it stores, in situ.

Some designers would argue this violates information hiding.
Others would ask "who owns the data element anyway?"

CS 1704 Intro to Data Structures & Software Eng.

Lined List Classes

Computer Science Dept Va Tech Oct., 2002 ©1995-2002 Barnette ND, McQuain WD

57. LL Class

Intro Data Structures & SE

SNode Class Mutators

// setData()
// Provides user ability to set data element.
// Parameters:
// E data value to be stored
// Returns: none
// Calls: none
// Called by: client code
//
void SNode::setData(const Item& E) {

Element = E;
}

// setNext()
// Provides user ability to modify pointer
// to next node.
// Parameters: value to which pointer will be set
// Returns: none
// Calls: none
// Called by: client code
//
void SNode::setNext(SNode* N) {

Next = N;
}

Why is the parameter to
setNext() not passed as:
const SNode* const N

Computer Science Dept Va Tech Oct., 2002 ©1995-2002 Barnette ND, McQuain WD

67. LL Class

Intro Data Structures & SE

Linked List Class SList
SList is used to encapsulate all high-level list operations.

Goals:
- safe storage of user-supplied data elements
- prevent user from corrupting list structure, but provide user

with useful access to data

// SList.h
//
// Simple version of singly-linked list.
//
// Features:
// - "Iterator" to keep track of current position in
// the list; user can move iterator to head or
// tail, or advance it one position
// toward tail of list.
// - Insert() adds new node after the current
// position; so, user can
// insert data elements in any order desired.
// - Delete() removes node at current position and
// returns data value from the node.
// - Get() returns reference to data element of
// current node, allowing editing actions by user.
// - Deep copy support and destructor.
// - Display() writes formatted list contents to any
// output stream.
//
// Assumptions:
// - Uses SNode class from SNode.h
// - User will supply a header file, Item.h
// containing a typedef statement mapping some
// known type to the name Item.
// - Data type Item provides any necessary deep copy
// support and destructor.
// - operator<< is supported for type Item.
//
. . .

CS 1704 Intro to Data Structures & Software Eng.

Lined List Classes

Computer Science Dept Va Tech Oct., 2002 ©1995-2002 Barnette ND, McQuain WD

77. LL Class

Intro Data Structures & SE

SList Interface
#ifndef SLIST_H
#define SLIST_H
#include <iostream>
using std::ostream;

#include "Item.h" // for Item declaration
#include "SNode.h" // for SNode declaration

class SList {
private:

SNode *Head;
SNode *Tail;
SNode *Current;

public:
SList(); // make an empty list
SList(const SList& Source); // copy constructor
SList& operator=(const SList& RHS); // assignment

// overload
bool Insert(const Item& E); // insert value E at

// current position
bool Delete(Item& E); // delete value at

// current position
Item& Get() const; // get reference to

// current data
// element

bool Advance(); // move current
// position toward tail

void goToHead(); // move current position
// to head

void goToTail(); // move current position
// to tail

bool atEnd() const; // true if current
// position is NULL

bool isEmpty() const; // true if list is empty
void Display(ostream& Out) const; // print list

// contents
~SList(); // deallocate nodes

};

#endif
consts for safety

One line functions
could be “inline” for
efficiency.

Computer Science Dept Va Tech Oct., 2002 ©1995-2002 Barnette ND, McQuain WD

87. LL Class

Intro Data Structures & SE

SList Constructor
// SList()
// Constructs an empty linked list.
// Parameters: none
// Returns: none
// Calls: none
// Called by: client code
//
SList::SList() {

Head = Tail = Current = NULL;
}

Results in the following state:

The object definition: SList L;

L

Head Curr Tail

• ••

CS 1704 Intro to Data Structures & Software Eng.

Lined List Classes

Computer Science Dept Va Tech Oct., 2002 ©1995-2002 Barnette ND, McQuain WD

97. LL Class

Intro Data Structures & SE

SList Destructor

// ~SList
// Deallocates SNode objects instantiated by SList
// object.
// Parameters: none
// Returns: none
// Calls: none
// Called by: client code
//
SList::~SList() {

SNode *toKill = Head;

while (toKill != NULL) {
Head = Head->getNext();
delete toKill;
toKill = Head;

}
}

The destructor is called automatically whenever the lifetime of an
SList object ends (i.e. at the end of the function/block in which
the objects are defined, when a dynamically allocated object is
destroyed with delete(), when an object containing a member
object is destroyed).

A class destructor’s names is always the tilde followed by the
name of the class. It has no parameters or return type and cannot
be overloaded.

SList needs a destructor in order to properly return the
dynamically-allocated nodes to the system heap.

The destructor must deallocate all the SNode objects that were
allocated by the SList object.

Computer Science Dept Va Tech Oct., 2002 ©1995-2002 Barnette ND, McQuain WD

107. LL Class

Intro Data Structures & SE

SList Insert Mutator

SList implements insertion to add a new node to the list
immediately following the target of the Current pointer, if that
is defined.

What limitation does this impose on the client?

/// Insert()
// Inserts a data value into a new node following
// the Current list position.
// Parameters: data value to be stored
// Returns: true if insertion succeeds,
// false otherwise
// Calls: SNode constructor
// SNode.getNext()
// SNode.setNext()
// Called by: client code
//
bool SList::Insert(const Item& E) {

if (Head == NULL) { // inserting in empty list
SNode *Temp = new SNode(E, NULL); // make node
Head = Tail = Temp; // hook it in
Current = Head; // make head node

// current
return true;

}

if (Current == NULL) { // no current position
return false;

}

// inserting node in middle or at end
SNode *Temp = new SNode(E, NULL); // make new node
Temp->setNext(Current->getNext()); // hook it in
Current->setNext(Temp);
return true;

}

CS 1704 Intro to Data Structures & Software Eng.

Lined List Classes

Computer Science Dept Va Tech Oct., 2002 ©1995-2002 Barnette ND, McQuain WD

117. LL Class

Intro Data Structures & SE

The Current Position

SList maintains a sense of a "current position" by storing a
private pointer that can be moved by the client; this allows the
client to use the list in a flexible, natural manner.

/// Advance()
// Moves current position to next node, if any.
// Parameters: none
// Returns: true if position advanced,
// false otherwise
// Calls: SNode.getNext()
// Called by: client code
//
bool SList::Advance() {

if (Current == NULL) return false; // no current
// position
// to advance

Current = Current->getNext();
return true;

}

The client may also set the current position to the head or tail of
the list, and there is a test to see if the current position is valid; the
design corresponds to the STL conventions by making "end" mean
"at an imaginary invalid location past the last node".
bool SList::atEnd() const {

return (Current == NULL);
}

Computer Science Dept Va Tech Oct., 2002 ©1995-2002 Barnette ND, McQuain WD

127. LL Class

Intro Data Structures & SE

Searching an SList

SList does not provide the client with a search function.
However, it's easy for the client to implement one:

bool Locate(const Item& Target, SList& L) {

if (L.isEmpty()) return false;

L.goToHead();

while (!L.atEnd()) {

if (Target == L.Get())
return true;

L.Advance();
}

return false;
}

The implementation assumes that there is an equality comparison
for the data type Item, but search would not make much sense
otherwise.

Question: will this code terminate properly if the SList doesn't
contain a value matching Target?

Question: why isn't the SList object passed to the function by
const reference?

Question: could this be a member function of SList?

CS 1704 Intro to Data Structures & Software Eng.

Lined List Classes

Computer Science Dept Va Tech Oct., 2002 ©1995-2002 Barnette ND, McQuain WD

137. LL Class

Intro Data Structures & SE

Client Access to the Data

SList provides the client with an accessor function to the data
element in the current list node:

/// Get()
// Provides user access to data element in current list
// node.
// Parameters: none
// Returns: reference to current data element
// Calls: SNode.getData()
// Called by: client code
//
Item& SList::Get() const {

return (Current->getData());
}

Note how SList::Get() and SNode::getData() are
designed to work together to give the client a reference to the
stored data element.

That allows the client to modify the data element in situ:

SList L;
. . .
L.Get() = 1;

SList L;
. . .
Item& Temp = L.Get();
Temp = 2;

Note also that Get() doesn't deal well with being called when
Current is NULL. The reason for this design is that there's no
good return value for the reference when Current is NULL.

This can be handled by making the return value Item* instead.

Computer Science Dept Va Tech Oct., 2002 ©1995-2002 Barnette ND, McQuain WD

147. LL Class

Intro Data Structures & SE

Design Discussion

Does the fact that SList::Get() returns a reference to a
member of the node violate information hiding?

No. To be picky, the nodes are NOT members of the SList
object. But that's an artificial defense, and misses important
points.

First of all, the data elements belong to the client, not to the
container. Granted, the container is responsible for organizing the
data elements, but it is also responsible for providing the client
with flexible, efficient access to the data.

Note that the design here is NOT the same as returning a reference
or pointer to a node; that would clearly be unsafe since the client
could then interact directly with the node interface, and perhaps
even deallocate the node, wreaking havoc with the physical
structure of the list.

CS 1704 Intro to Data Structures & Software Eng.

Lined List Classes

Computer Science Dept Va Tech Oct., 2002 ©1995-2002 Barnette ND, McQuain WD

157. LL Class

Intro Data Structures & SE

SList Delete Mutator

SList deletion removes the current node (if there is one), and
returns the data element it contained to the client:

bool SList::Delete(Item& E) {

if (Current == NULL) return false;

if (Current == Head) { // deleting first node
Head = Head->getNext(); // reset head pointer

// "around" target
E = Current->getData(); // save data element
delete Current; // deallocate node
Current = Head;
return true;

}

// find preceding node
SNode *Previous = Head; // start at head node

while (Previous->getNext() != Current)
Previous = Previous->getNext();

// make preceding node point to successor
Previous->setNext(Current->getNext());

E = Current->getData(); // save data element
delete Current; // deallocate node
Current = Previous->getNext();

return true;
}

Computer Science Dept Va Tech Oct., 2002 ©1995-2002 Barnette ND, McQuain WD

167. LL Class

Intro Data Structures & SE

Deep Copy for SList

SList must also provide deep copy support:

////////////////////////////////////// copy constructor
// Initializes new SList object as a copy of an
// existing SList object.
// Parameters: SList object to be copied
// Returns: none
// Calls: SNode.getData()
// SNode.getNext()
// SList.goToTail()
// Called by: client code
//
SList::SList(const SList& Source) {

Head = Tail = Current = NULL;

SNode *toCopy = Source.Head;

while (toCopy != NULL) {

Insert(toCopy->getData());
goToTail();
toCopy = toCopy->getNext();

}
}

Note that the implementation uses member functions of SList,
rather than re-implementing their logic here.

As usual, the implementation of SList::operator= is similar
to the copy constructor.

CS 1704 Intro to Data Structures & Software Eng.

Lined List Classes

Computer Science Dept Va Tech Oct., 2002 ©1995-2002 Barnette ND, McQuain WD

177. LL Class

Intro Data Structures & SE

Utility Functions

SList also provides a simple test for an empty list, and display
functionality:

void SList::Display(ostream& Out) const {

SNode *Temp = Head;
int Pos = 0;

while (Temp != NULL) {

Out << setw(3) << Pos << ": "
<< Temp->getData() << endl;

Pos++;
Temp = Temp->getNext();

}
}

Note that the implementation assumes that operator<< can be
applied to the data type Item.

This could also easily be written as a non-member function,
however the ability to easily display the contents of a container is
so useful in testing and debugging that it is common to build that
into containers that are under development.

Computer Science Dept Va Tech Oct., 2002 ©1995-2002 Barnette ND, McQuain WD

187. LL Class

Intro Data Structures & SE

Sample Data Element Class

// CreditCard.h
#ifndef CREDITCARD_H
#define CREDITCARD_H

#include <iostream>
using std::ostream;
#include <string>
using std::string;

class CreditCard {
private:

string Number;
double Balance;

public:
CreditCard(const string& Num = "",

double Amount = 0.0);
void Payment(double Amount);
void Charge(double Amount);
double CardBalance() const;

bool operator==(const CreditCard& RHS) const;
bool operator!=(const CreditCard& RHS) const;
bool operator<(const CreditCard& RHS) const;
bool operator<=(const CreditCard& RHS) const;
bool operator>(const CreditCard& RHS) const;
bool operator>=(const CreditCard& RHS) const;

friend ostream& operator<<(ostream& Out,
const CreditCard& Card);

};

#endif friend operators and functions can access
private members as if they were class members
themselves.

CS 1704 Intro to Data Structures & Software Eng.

Lined List Classes

Computer Science Dept Va Tech Oct., 2002 ©1995-2002 Barnette ND, McQuain WD

197. LL Class

Intro Data Structures & SE

Aside: friends

ostream& operator<<(ostream& Out, const CreditCard&
Card) {

Out << fixed << showpoint;
Out << Card.Number

<< setw(11) << setprecision(2) << Card.Balance;
return Out;

}

There are some circumstances in which an operator or function
needs to have direct access to private data of a class, but it cannot
itself be a class member.

The most common example is an overloaded operator<<.

An operator can only be a member of the class that appears as its
left operand.

The left operand of operator<< is an output stream object.

The problem may be solved by having the (right operand) class
declare the operator to be a friend.

Friends have privileged access to the private section of a class:

Normally, the implementation of a friend operator or function will
be placed in the same file as the class implementation.

Computer Science Dept Va Tech Oct., 2002 ©1995-2002 Barnette ND, McQuain WD

207. LL Class

Intro Data Structures & SE

Data Comparison Operators

Sometimes the relational operators will consider only some, or
one, of the data members of a class:

bool CreditCard::operator==(const CreditCard& RHS) const {

return (Number == RHS.Number);
}

This overloaded operator is required in order for search code to
work. The other relational operators, such as operator<, may
be needed for sorting or other operations.

As a general rule, if you implement operator== for a class, you
should also supply operator!=.

And, if you implement operator<, you should also supply the
other four comparisons.

The implementation cost is trivial, and it will make the resulting
class much more natural to use.

CS 1704 Intro to Data Structures & Software Eng.

Lined List Classes

Computer Science Dept Va Tech Oct., 2002 ©1995-2002 Barnette ND, McQuain WD

217. LL Class

Intro Data Structures & SE

Non-destructive List Merge

// Given two SList objects, return a new ordered list
// which contains all of the elements of both lists,
// (the original lists must NOT be destroyed by the
// merging).
//
SList MergeLists(const SList& L1, SList L2){

Item toCopy;
SList Merger = L1;

L2.goToHead();
while (!L2.atEnd()) {

toCopy = L2.Get();
Merger.Insert(toCopy);
Merger.goToTail();

L2.Advance();
}

return Merger;
}

In some applications it is useful to be able to merge two lists into a
third list.

The function below does that, making extensive use of the SList
interface:

Question: how would you modify the function above to avoid
storing duplicates in the merged list?

Question: what would happen if the function returned SList&?

Computer Science Dept Va Tech Oct., 2002 ©1995-2002 Barnette ND, McQuain WD

227. LL Class

Intro Data Structures & SE

Simplifying the List

The implementation of SList can be simplified somewhat by
changing the access controls used in the SNode class:

class SNode {
public:

Item Element;
SNode *Next;

SNode();
SNode(const Item& E, SNode* N = NULL);

};

The change is that the data element and pointer are now public,
rendering all the member functions except the constructors
unnecessary.

What about information hiding?

SNode objects are designed to be created, used, and destroyed
only by a container class, like SList, not by client code. So, the
usual concerns about clients corrupting class data are absent.

What do we gain?

The calls that SList functions made to the SNode accessor and
mutator functions are eliminated in favor of direct accesses. That's
both faster at runtime and simpler to write.

This is perhaps the ONLY situation in which
the use of public data members is acceptable.

Would the interface of SList need to be changed?

CS 1704 Intro to Data Structures & Software Eng.

Lined List Classes

Computer Science Dept Va Tech Oct., 2002 ©1995-2002 Barnette ND, McQuain WD

237. LL Class

Intro Data Structures & SE

Ordered List

The implementation of SList could be modified to maintain the
data elements in ascending (or descending) order:

bool SList::Insert(const Item& E) {

if (Head == NULL) { // inserting to empty list
SNode *Temp = new SNode(E, NULL);
Head = Tail = Temp;
Current = Head;
return true;

}

SNode *Predecessor = NULL; // find preceding node
SNode *Look = Head;
while (Look != NULL && Look->Element < E) {

Predecessor = Look;
Look = Look->Next;

}

if (Predecessor == NULL) {
SNode *Temp = new SNode(E, Head);
Head = Temp;
return true;

}

// inserting in middle or at end
SNode *Temp = new SNode(E, Look);
Predecessor->Next = Temp;
return true;

}

The data type Item must
provide operator<.

There is now some risk associated with SList::Get(); if the
client uses it to modify a data element in the wrong way then the
list ordering would be incorrect.

The data element should be ordered on an immutable key field.

Computer Science Dept Va Tech Oct., 2002 ©1995-2002 Barnette ND, McQuain WD

247. LL Class

Intro Data Structures & SE

Other Design Options

The interface of SList reflects a particular design philosophy;
other developers would make different decisions.

For example, the user-controlled "bookmark" approach could be
abandoned in favor of a less open approach. That would require
some additional interface changes:

- at least one search function would be necessary.
- if the client is to have any control over the ordering of the

data elements, there would have to be at least some variation
of the insertion function, such as a prefix and/or a suffix
insertion.

- deletion would have to allow the client to specify the data
element to be found and removed.

