
CS 1704 Intro to Data Structures & Software Eng.

Pointers

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

13. Pointers

Intro Data Structures & SE

Pointers

Slides

1. Table of Contents
2. Dynamic Variables
3. Memory and Addresses
4. Pointer Declaration
5. Pointer References
6. Pointer References (cont)
7. Pointer Manipulation
8. Pointers and Type
9. Addressing: Direct & Indirect
10. Record Pointers
11. Pointer Expressions
12. Dynamic Storage
13. Allocating Arrays
14. Allocating Arrays (cont)
15. Resizing an Array
16. Allocation Failure
17. Allocation Failure (cont)
18. Reference Pointer Parameters
19. Value Pointer Parameters
20. const Pointer Parameters
21. const Pointers
22. const Summary
23. Pointer Array Arithmetic
24. Incrementing Pointers
25. Array of Structs Pointer
26. Pointer Incrementing Abuse
27. Arrays of Pointers
28. Dynamic Memory Problems
29. Reference Variables

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

23. Pointers

Intro Data Structures & SE

Dynamic Variables

Static Variables
– Size is fixed throughout execution
– Size is known at compile time
– Space/memory is allocated at execution

Dynamic Variables
– Created during execution

† "dynamic allocation"
– No space allocated at compilation time
– Size may vary

† Structures are created and destroyed during execution.
– Knowledge of structure size not needed
– Memory is not wasted by non-used allocated space.
– Storage is required for addresses.

Example of Pointers
– Assume:

Houses represent data
Addresses represent the locations of the houses.

– Notice:
To get to a house you must have an address.
No houses can exist without addresses.
An address can exist without a house (vacant lot / NULL pointer)

CS 1704 Intro to Data Structures & Software Eng.

Pointers

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

33. Pointers

Intro Data Structures & SE

Memory and Addresses

On modern computers, memory is organized in a manner
similar to a one-dimensional array:

– memory is a sequence of bytes (8 bits)
– each byte is assigned a numerical address, similar to array

indexing
– addresses are nonnegative integers; valid range is

determined by physical system and OS memory
management scheme

– OS (should) keep track of which addresses each process
(executing program) is allowed to access, and attempts to
access addresses that are not allocated to a process should
result in intervention by the OS

– OS usually reserves a block of memory starting at address
0 for its own use

– addresses are usually expressed in hexadecimal (base 16),
typically indicated by use of a prefix: 0xF4240

Memory Organization

– run-time stack used for statically allocated storage
– heap used for dynamically allocated storage

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

43. Pointers

Intro Data Structures & SE

Pointer Declaration

Pointer Type
– Simple type of variables for storing the memory addresses of

other memory locations

Pointer Variables Declarations
– The asterisk ‘*’ character is used for pointer variable

declarations:

– iptr is a pointer to an integer
– fptr is a pointer to a real

– Given the equivalent declaration:

† Declares iptr1 to be a pointer variable, but iptr2 is a simple
integer variable.

– Typedef declaration:

† Declare all pointer variables in separate declaration statements.

– Pointer Type Definitions:

int* iptr;
float* fptr,

fptr2;

recommended form

int* iptr1, iptr2;

int* iptr1;
int iptr2;

typedef int* intPtr;
intPtr iptr1;

common declarationcommon declaration

strong type declaration (preferred)strong type declaration (preferred)

not a pointer

not a pointer

CS 1704 Intro to Data Structures & Software Eng.

Pointers

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

53. Pointers

Intro Data Structures & SE

Pointer References

Address Operator: & (ampersand)
– Unary operator that returns the hardware memory location

address of it’s operand.

Given:

– Address Assignment:

Dereference / Indirection Operator: * (asterisk)
– unary ‘pointer’ operator that returns the memory contents at

the address contained in the pointer variable.

– Pointer Output:

– (Possible) results:

int* iptr1;
int* iptr2;
int numa, numb;

numa = 1;
numb = 2;

iptr1 = &numa;
iptr2 = &numb;

cout << iptr1 << *iptr1 << endl;
cout << iptr2 << *iptr2 << endl;

0xF4240 1
0x3B9ACA00 2

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

63. Pointers

Intro Data Structures & SE

Pointer References

NULL Pointer
– Pointer constant, address 0

– Named constant in the <cstddef> include header
(<stddef.h> old style header).

– Represents the empty pointer
† points nowhere , unique pointer/address value

– Symbolic/graphic representations:

– Illegal: NEVER dereference a pointer that equals NULL

*NULL

•

CS 1704 Intro to Data Structures & Software Eng.

Pointers

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

73. Pointers

Intro Data Structures & SE

Pointer Diagrams
– Given (text/code representation) Graphic

representation

Pointer Assignments

– #1

– #2

Pointer Manipulation

#include <cstddef>
void main() {

int* iptr1 = NULL;
int* iptr2 = NULL;
int numa, numb;

numa = 1;
numb = 2;

}

•

• 1

2

iptr1

iptr2

numa

numb

iptr1 = &numa;
iptr2 = &numb;

2

1

iptr1

iptr2

numa

numb

*iptr2 = *iptr1 - 1;
iptr2 = iptr1;
*iptr2 = 3 ;

3

0

iptr1

iptr2

numa

numb

No pointer access to numb
remains.

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

83. Pointers

Intro Data Structures & SE

Pointers have type:
– the type of a pointer is determined by the type of target that is

specified in the pointer declaration.

– here, iptr1 and iptr2 are pointers to int (type int*).

– it is a compile-time error to assign a non-pointer value to a pointer:

or vice versa:

Typecasts and pointers:

– the assignments above would be legal if an explicit typecast were
used:

Pointers and Type

. . .
int* iptr1 = NULL;
int* iptr2 = NULL;

. . .

iptr2 = *iptr1; // error: assign int to int*

iptr1 = iptr2; // error: assign int to int

iptr2 = (int*) *iptr1; // legal

*iptr1 = int(iptr2); // legal

typedef int* iPtr;
iptr2 = iPtr(*iptr1); // legal

However, be very cautious with this sort of code. It rarely, if ever, makes
much sense to assign a pointer a value that's not either another pointer, or
obtained by using the dereference operator.

CS 1704 Intro to Data Structures & Software Eng.

Pointers

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

93. Pointers

Intro Data Structures & SE

Addressing: Direct & Indirect
Direct Addressing

– normal variable access
– non-pointer variables represent one-level of addressing
– non-pointer variables are addresses to memory locations

containing data values.
– compilers store variable information in a “symbol table”:

– compilers replace non-pointer variables with their addresses
& fetch/store operations during code generation.

Indirect Addressing
– accessing a memory location’s contents thru a pointer
– pointer variables represent two-levels of addressing
– pointer variables are addresses to memory locations

containing addresses .
– compilers replace pointer variables with their addresses &

double fetch/store operations during code generation.

x = 28;
iptr = &x;

s ymbo l type • • • addre s s
x int • • • 0xF4240

iptr int* • • • 0xF4244

Note: indirect addressing required
to dereference pointer variable.

Note: indirect addressing required
to dereference pointer variable.

MEMORY
address contents

• • • • • •
0xF423C ???
0xF4240 28
0xF4244 0xF4240
0xF4248 ???

• • • • • •

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

103. Pointers

Intro Data Structures & SE

Record Pointers

Pointers to structures:
– Given:

Member Access
– Field Access Examples:

– Errors:

Arrow Operator
– Short-hand notation:

const int f3size = 20;

struct rectype {
int field1;
float field2;
char field3[f3size];

};

typedef rectype *recPtr;

rectype rec1 = {1, 3.1415f, "pi"};
recPtr r1ptr;

r1ptr = &rec1;

cout << (*r1ptr).field1
<< (*r1ptr).field2
<< (*r1ptr).field3;

Note: parentheses are
required due to operator
precedence; without ()
compiler attempts to
dereference fields.

Note: parentheses are
required due to operator
precedence; without ()
compiler attempts to
dereference fields.

cout << *r1ptr.field1
<< *r1ptr.field2
<< *r1ptr.field3;

cout << r1ptr->field1
<< r1ptr->field2
<< r1ptr->field3;

Note: -> is an ANSI
“C” pointer member
selection operator.
Equivalent to:
(*pointer).member

Note: -> is an ANSI
“C” pointer member
selection operator.
Equivalent to:
(*pointer).member

CS 1704 Intro to Data Structures & Software Eng.

Pointers

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

113. Pointers

Intro Data Structures & SE

Pointer Expressions

Arrays == Pointers
– Non-indexed Array variables are considered pointers in C
– Array names as pointers contain the address of the zero

element (termed the base address of the array).

Given:

Pointer Indexing
– All pointers can be indexed,

(logically meaningful only if the pointer references an
array).

– Example:

Logical Expressions
– NULL tests:

– Equivalence Tests:

const int size = 20;

char name[size];
char *person;

person = name;
person = &name[0];

equivalent
assignments

person[0] = ‘ ’;
person[size-2] = ‘.’;

if (!person) //true if (person == NULL)

preferred check

if (person == name)
//true if pointers reference
//the same memory address

pointer types
must be
identical

pointer types
must be
identical

Does not create a
copy, (no memory
allocation)

Does not create a
copy, (no memory
allocation)

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

123. Pointers

Intro Data Structures & SE

Dynamic Storage

Heap (Free Store, Free Memory)
– Area of memory reserved by the compiler for allocating &

deallocating to a program during execution.
Operations:

Allocation
char* name;
int* iptr;
// C++ // C
name = new(nothrow)char; name = (char *)

malloc(sizeof(char));

iptr = iptr = (int *)
new(nothrow) int [20]; malloc(20*sizeof(int));

//initialization
name = new char ('A');

Deallocation
//C++ // C
delete name; free(name);
name = NULL;
delete [] iptr; free(iptr);
//delete [20] iptr;
iptr = NULL;

C++ function C
new type allocation malloc(# bytes)

delete pointer deallocation free pointer

With most compilers, NULL is returned if the heap is empty.
However, see slide 3.16 for a caveat ...

dynamic array allocation

pointer typecasts required

Pointers are undefined after
deallocation and should be set to
NULL.

CS 1704 Intro to Data Structures & Software Eng.

Pointers

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

133. Pointers

Intro Data Structures & SE

Declaration Syntax
int Size;
cin >> Size; // dynamic value

// use as array dim
char* Name = new (nothrow) char[Size];
int* Scores;
Scores = new (nothrow) int[Size];
Size = 4 * Size + 1; // does NOT change array

Effect of array allocation via new

Allocating Arrays

3F42740Scores

Address
returned
by new;
value of
Scores

3F42750

3F4274C

3F42748

3F42744

3F42740

Address

4

3

2

1

0

Index

Storage
space is
allocated
contiguously
in memory

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

143. Pointers

Intro Data Structures & SE

Allocating Arrays Cont’d

Use like any statically-allocated array

strcpy(Name, "Fred G Flintstone"); // static size

for (int Idx = 0; Idx < Size; Size++)
Scores[Idx] = 0;

SortScores(Scores, Size);

Deallocation

delete [] Name;
delete [] Scores;
delete [20] Scores; // including dim is optional

// and has no effect

Failure to explicitly delete a dynamic variable will result
in that memory NOT being returned to the system, even if
the pointer to it goes out of scope.

This is called a “memory leak” and is evidence of poor
program implementation.

If large dynamic structures are used (or lots of little ones), a
memory leak can result in depletion of available memory.

// WARNING
delete Name;

//May not release array memory, undefined results

CS 1704 Intro to Data Structures & Software Eng.

Pointers

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

153. Pointers

Intro Data Structures & SE

Resizing an Array

Growing a dynamically-allocated array

int* newArray = new int[newSize];

// copy contents of old array into new one
for (int Idx = 0; Idx < oldCapacity; Idx++)

newArray[Idx] = Scores[Idx];

// delete old array
delete [] Scores;

// retarget old array pointer to new array
Scores = newArray;

// clean up alias
newArray = NULL;

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

163. Pointers

Intro Data Structures & SE

Allocation Failure

An invocation of operator new will fail if the heap does not
contain enough free memory to grant the request.

Traditionally, the value NULL has been returned in that situation.
However, the C++ Standard changes the required behavior. By the
Standard, when an invocation of new fails, the value returned may
or may not be NULL; what is required is that an exception be
thrown. We do not cover catching and responding to exceptions in
this course.

Fortunately, for the present, most C++ language implementations
will continue to guarantee that NULL is returned in this case.

Better still, the Standard provides a way to force a NULL return
instead of an exception throw:

const int Size = 20;
int* myList = new(nothrow) int[Size];

Use of this syntax will
guarantee that myList will
be assigned NULL if the
allocation fails.

// to turn off nothrow warning
#pragama warning (disable:4291)

CS 1704 Intro to Data Structures & Software Eng.

Pointers

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

173. Pointers

Intro Data Structures & SE

Allocation Failure

#include <cstdlib>
#include <iostream>
#include <iomanip>
using namespace std;

int main() {

int Count;
int* t;
const int Size = 900000000;
int* myList = new(nothrow) int[Size];

if (myList == NULL) {
cout << "Allocation failed!!" << endl;
return(EXIT_FAILURE);

}

for (t = myList, Count = 0; Count < Size; Count++, t++)
{

*t = Count;
}

for (t = myList, Count = 0; Count < Size; Count++, t++)
{

cout << t << setw(5) << *t << endl;
}

return(EXIT_SUCCESS);
}

The following program attempts to allocate an array, initialize it,
and then display its contents. However, the allocation will almost
certainly fail.

What if t was replaced with myList?

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

183. Pointers

Intro Data Structures & SE

Reference Pointer Parameters

In C++, all function parameters are, by default, passed by value.
When passing a pointer as a parameter to a function, you must
decide how to pass the pointer.

If the called function needs to modify the value of the pointer, you
must pass the pointer by reference:

// Pre: newSize > oldSize

void growArray(int*& Array, const int oldSize,

const int newSize) {

assert(newSize > oldSize);

int* tempArray = new int[newSize];

Copy(tempArray, Array, oldSize);

delete [] Array;

Array = tempArray; // modifies VALUE of Array

tempArray = NULL; //is this statement necessary?

}

This pointer is being passed by reference.

1787723142Array

?????1787723142

tempArray

X

CS 1704 Intro to Data Structures & Software Eng.

Pointers

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

193. Pointers

Intro Data Structures & SE

Value Pointer Parameters

1787723142Source

?????1787723142Target

If the called function only needs to modify the value of the target of
the pointer, you may pass the pointer by value:

void Copy(int* Target, int* Source, const int Dim) {

for (int Idx = 0; Idx < Dim; Idx++)

Target[Idx] = Source[Idx];

}

. . .

Copy() copies the target of one pointer to the target of another
pointer. Neither pointer is altered.

This is termed a side-effect. Considered poor practice. Better to
pass pointers by reference to indicate the change of target, (or
better still to explicitly pass the pointer by const but not the target).
void Copy(int* const Target,

const int* const Source,
const int Dim) ;

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

203. Pointers

Intro Data Structures & SE

const Pointer Parameters

Passing a pointer by value is somewhat dangerous. As shown in
the implementation of Copy() on the previous slide, if you pass a
pointer to a function by value, the function does have the ability to
modify the value of the target of the pointer. (The called function
receives a local copy of the pointer’s value.)

This is objectionable if the function has no need to modify the
target. The question is: how can we pass a pointer to a function
and restrict the function from modifying the target of that pointer?

void Print(const int* Array, const int Size) {

for (int Idx = 0; Idx < Size; Idx++) {

cout << setw(5) << Idx

<< setw(8) << Array[Idx] << endl;

}

}

The use of “const” preceding a pointer parameter specifies
that the value of the target of the pointer cannot be modified
by the called function. So, in the code above, Print() is
forbidden to modify the value of the target of the pointer
Array.

Print() also cannot modify the value of the actual pointer
parameter since that parameter is passed by value.

CS 1704 Intro to Data Structures & Software Eng.

Pointers

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

213. Pointers

Intro Data Structures & SE

const Pointers

If “const int* iPtr” means that the TARGET of iPtr is to
be treated as a const object, how would we specify that a pointer
is itself to be a const?

// constant pointer to int
int* const iPtr = new int(42);

Here, the value stored in the target of iPtr can be changed,
but the address stored in iPtr cannot be changed. So, iPtr
will always point to the same location in memory, but the
contents of that location may change. (Array variables are
essentially const pointers.)

Given the declaration of iPtr above:

*iPtr = 17; // legal

int anInt = 55;

iPtr = &anInt; // illegal

Finally we can have a constant pointer to a constant target:
const int* const cPtr = new int(42);

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

223. Pointers

Intro Data Structures & SE

const Summary

Courtesy of Bjarne Stroustrup, “The C++ Programming Language”

void f1(char* p) {

char s[] = "Gorm"; // pointer to char

const char* pc = s; // pointer to constant char

pc[3] = 'g'; // error: target is constant

pc = p; // legal: pointer is malleable

char* const cp = s; // constant pointer

cp[3] = 'g'; // legal: target is malleable

cp = p; // error: pointer is constant

const char* const cpc = s; // constant pointer to

// constant target

cpc[3] = 'g'; // error: target is constant

cpc = p; // error: pointer is constant

}

How to keep it straight? Stroustrup suggests reading the
declarations backwards (right to left):
char* const cp = s;

cp is a constant pointer to a char

CS 1704 Intro to Data Structures & Software Eng.

Pointers

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

233. Pointers

Intro Data Structures & SE

Pointer Array Arithmetic

If a pointer targets an array, it is possible to navigate the array by
performing arithmetic operations on the pointer:

#include <iostream>
#include <iomanip>
#include <cstring>
using namespace std;

void main() {

char s[] = "Gorm";
char* p = s;

for (int Idx = 0; Idx < strlen(s); Idx++, p++) {
cout << setw(3) << Idx << " " << *p << endl;

}
}

produces the output:

Consider the update section of the for loop. At the end of each pass
through the loop, we increment the value of the pointer p:

p++; // increments the value of p

(*p)++; // increments the value of the target of p

The mystery here is: why does incrementing the value of p cause p
to step through the array of characters, one-by-one?

0 G
1 o
2 r
3 m

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

243. Pointers

Intro Data Structures & SE

Incrementing Pointers

From B. Stroustrup, “The C++ Programming Language”:

The result of applying the arithmetic operators +, -, ++, or -- to
pointers depends on the type of the pointed to target object. When
an arithmetic operator is applied to a pointer p of type T*, p is
assumed to point to an element of an array of objects of type T;
p+1 points to the next element of that array, and p-1 points to the
previous element. This implies that the integer value of p+1 will
be sizeof(T) larger than the integer value of p.

In other words, the result of incrementing a pointer depends on the
type of thing to which it points.

const int SIZE = 5;
int iArray[SIZE] = {32, 17, 89, 43, 91};
int* iPtr = iArray;

for (int k = 0; k < SIZE; k++, iPtr++)
cout << setw(3) << k

<< setw(10) << iPtr
<< setw(10) << *iPtr

produces:
0 006AFDD0 32

1 006AFDD4 17

2 006AFDD8 89

3 006AFDDC 43

4 006AFDE0 91

Why does this
output make
sense?

CS 1704 Intro to Data Structures & Software Eng.

Pointers

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

253. Pointers

Intro Data Structures & SE

Array of Structs Pointer

#include <iostream>
#include <iomanip>
using namespace std;

struct Complex {

double Real;
double Imaginary;

};

void main() {

const int SIZE = 5;

Complex cArray[SIZE];
Complex* cPtr = cArray;

cout << "cPtr: " << cPtr << endl;
cPtr++;
cout << "cPtr: " << cPtr << endl;

}

produces:

Be very careful with code such as this….

…. the logic makes sense only if the target of the pointer is an
array….

…. but, the syntax is legal no matter what the target of the pointer
happens to be….

cPtr: 006AFD78

cPtr: 006AFD88

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

263. Pointers

Intro Data Structures & SE

Pointer Incrementing Abuse

#include <iostream>
#include <iomanip>
using namespace std;

void main() {

double x = 3.14159;
double* dPtr = &x;

cout << " dPtr: " << dPtr << endl
<< "*dPtr: " << *dPtr << endl;

dPtr++;

cout << " dPtr: " << dPtr << endl
<< "*dPtr: " << *dPtr << endl;

}

produces:

Incrementing dPtr makes no sense (logically) since that will
simply make the target of dPtr the 8 bytes of memory that follow
x.

dPtr: 006AFDC0

*dPtr: 3.14159

dPtr: 006AFDC8

*dPtr: 1.20117e-306

CS 1704 Intro to Data Structures & Software Eng.

Pointers

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

273. Pointers

Intro Data Structures & SE

Arrays of Pointers

Declarations:
– Given:

Member Access
– Field Access Examples:

Arrow Operator
– Short-hand notation:

cout << (*rayPtrs[size-1]).field1
<< (*rayPtrs[size-1]).field2
<< (*rayPtrs[size-1]).field3;

cout << rayPtrs[size-1]->field1
<< rayPtrs[size-1]->field2
<< rayPtrs[size-1]->field3;

const int size = 20;

struct rectype {
int field1;
float field2;
char field3[size];

};
typedef rectype *recPtr;

rectype rec1 = {1, 3.1415f, "pi"};
recPtr rayPtrs[size];

rayPtrs[size-1] = &rec1;

Using the same sorting algorithm, why is sorting an
array of pointers to records faster than sorting an
array of records?

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

283. Pointers

Intro Data Structures & SE

Dynamic Memory Problems
Given:

Garbage
– Previously allocated memory that is inaccessible thru any

program pointers or structures.
– Example:

Aliases
– Two or more pointers referencing the same memory

location.
– Example:

Dangling Pointers
– Pointers that reference memory locations previously

deallocated.
– Example:

typedef int *intPtr;
intPtr iptr1, iptr2;

iptr1 = new int (6);
iptr1 = NULL;

?

6

before

during

after

iptr1 *iptr1

6

iptr1 = new int (6);
iptr2 = iptr1;
delete iptr1;

iptr1

iptr2
6

memory leaksmemory leaks

iptr1

iptr2

?

?

iptr1 = new int (6);
iptr2 = iptr1;

•

CS 1704 Intro to Data Structures & Software Eng.

Pointers

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

293. Pointers

Intro Data Structures & SE

Reference Variables

Reference Variable Declarations
– The ampersand ‘&’ character is used for reference variable

declarations:

Pointer Differences
– Reference variables do NOT use the address and dereference

operators (& *).
– Compiler dereferences reference variables transparently.
– Reference variables are constant addresses, assignment can

only occur as initialization or as parameter passing,
reassignment is NOT allowed.

– Examples:

Purpose
– Frees programmers from explicitly dereferencing accessing,

(in the same way nonpointer variables do).
– ‘Cleans up the syntax’ for standard C arguments and

parameters.

int& iptr;
float &fptr1, &fptr2;

Reference variables are
aliases for variables.

Reference variables are
aliases for variables.

char achar = ‘A’;
char& chref = achar;
//char* chptr = &achar;

chref = ‘B’;
//achar = ‘B’;
//*chptr = ‘B’;

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

303. Pointers

Intro Data Structures & SE

Reference Returns

Return by Value
Normally most function returns are by value:

The function does not actually return b, it returns a copy of b.

Return by Reference
Functions can return references:

The code above contains a subtle trap. The function returns a
reference to a variable b which will no longer exist when the
function exits and goes out of scope. Returning a reference to
an already referenced variable is acceptable, (although most
likely unnecessary and confusing).

int f(int& a) {
int b = a;
// . . .
return(b);

}//f

int& f(int& a) {
int b = a;
// . . .
return(b);

}//f *** bad ***

Good compilers will issue a
warning for returning a
reference to a local variable.

int& f(int& a) {
int b = a;
// . . .
return(a);

}//f *** alias ***

Do NOT return references to
private data members of a
class. This violates the
encapsulation of the class.

