
CS 1704 Intro to Data Structures & Software Eng.

NMAKE 1

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

1A10. NMAKE

Intro Data Structures & SE

NMAKE

Web References:

http://msdn.microsoft.com/library/devprods/vs6
/visualc/vcug/_asug_overview.3a_.nmake_reference.htm
http://www.bell-labs.com/project/nmake/tutorial/

Definition :

• Microsoft development utility program for keeping a set of
separately compiled files current, (AT&T and Lucent also
maintain versions of nmake).

• Eliminates unnecessary compilations in large programs.

• Similar to the UNIX “make” command. NMAKE however
maintains state information for future executions.

• Integrated into the Microsoft visual development environment.

Basic Operation :

• Reads a text file (“Makefile” in the current directory) that
describes the relationships (dependencies) among all of the
files that compose the program under development & the
system commands required to recreate (compile, link)
program files when changes have occurred.

• Queries the OpSys to determine which files have been altered
since the last make (last time program was formed) occurred.

• Executes the commands to reform all files that are dependent
upon the altered files.

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

2A10. NMAKE

Intro Data Structures & SE

Dependencies

• Makefile files are composed of dependency lines followed by
indented (tab) commands to recreate the files.

Dependency line format

• The “target files” is a blank separated list of files that are
dependent upon the prerequisite file list specified after the
colon, (the first target files’ name must start in column 1).

• The recreation commands are any valid system commands,
must be tab indented on consecutive lines immediately
following the dependency lists. (Colon delimiting target &
prerequisite files is required.)

• NMAKE executes the recreation commands if any of the
target files have a date or time stamp that is older than any of
the prerequisite files.

• NMAKE scans through source files to locate implicit
prerequisites, such as header files in C++ programs.

target files : prerequisite files
recreation command
… … …
recreation command

CS 1704 Intro to Data Structures & Software Eng.

NMAKE 2

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

3A10. NMAKE

Intro Data Structures & SE

Simple Example

prog : main.obj unit1.obj unit2.obj

cl /Feprog main.obj unit1.obj unit2.obj

main.obj : main.cpp

cl /c main.cpp

unit1.obj : unit1.cpp unit1.h

cl /c unit1.cpp

unit2.obj : unit2.cpp unit2.h

cl /c unit2.cpp

• The first line gives the dependency of the executable image
(prog) upon the object (.obj) files. The command lines calls
cl (MS command line C++ compiler) to perform the linking.

• The following lines gives the object dependencies upon the
source, and the cl commands to recompile the source files.

• If only one source file has been changed nmake will
recompile only that file & then re-link the object files.

• Comments follow a sharp (#) on any line.

• A target file may follow make on the command if it is
desired to remake only a portion of the system, otherwise
make starts with the first dependency line.

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

4A10. NMAKE

Intro Data Structures & SE

Dependency Hierarchy

prog

main.obj unit1.obj unit2.obj

main.cpp unit1.cpp unit1.h unit2.cpp unit2.h

NMAKE builds an implicit dependency hierarchy for the system:

• The dependency hierarchy is checked by NMAKE to
determine if a file is up-to-date when it is used in a
prerequisite list.

• If prog must be recreated, it checks the dependency tree to
determine if main.obj, unit1.obj & unit2.obj must be
reformed first.

CS 1704 Intro to Data Structures & Software Eng.

NMAKE 3

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

5A10. NMAKE

Intro Data Structures & SE

Implicit Dependency Rules

• make contains internal (automatic) rules for producing
object files (.obj) from C language source files (.cpp).

• Given that the previous source files were cpp files then the
makefile could be reduced taking advantage of the internal
make rules:

prog : main.obj unit1.obj unit2.obj

cl /Feprog main.obj unit1.obj unit2.obj

main.obj : main.cpp

unit1.obj : unit1.cpp unit1.h

unit2.obj : unit2.cpp unit2.h

• the commands to call the C compiler are unnecessary,
since make can form them itself.

• make can be modified (or taught) the corresponding
dependency rules for any language/utility

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

6A10. NMAKE

Intro Data Structures & SE

Variables & Macros

• make allows the user to assign strings to variables.

syntax: variable = string

• a macro invocation or string usage occurs when the variable
is preceded by a $ and enclosed in parenthesis.

• make replaces the variable with the string before executing
the command.

Example:

SOURCE = main.cpp unit1.cpp unit2.cpp
HEADERS = main.h unit1.h unit2.h

OBJECTS = main.obj unit1.obj unit2.obj

prog : $(OBJECTS)

cl /Feprog $(OBJECTS)

main.obj : main.cpp

unit1.obj : unit1.cpp unit1.h

unit2.obj : unit2.cpp unit2.h

output : $(SOURCE) $(HEADERS) #print files

print $(SOURCE)

print $(HEADERS)

CS 1704 Intro to Data Structures & Software Eng.

NMAKE 4

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

7A10. NMAKE

Intro Data Structures & SE

Predefined Variables

CC default value is the name of the system C compiler, cl

CFLAGS C compiler options, initially null, sometimes set to -O
to optimize compilation

$< list of the prerequisite files that are out-of-date
with respect to the target of the current rule.

The previous output dependency could be rewritten:

output : $(SOURCE) $(HEADERS) #print files

print $< #output altered files.

• note that the file output need not exist.

• if make encounters a nonexistent file it automatically
executes the associated command sequence, but does not
create the file.

• in order to prevent all the files from being printed each time
make is executed, a dummy “output” file must be created in
order to maintain a time & date stamp for make to check
against.

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

8A10. NMAKE

Intro Data Structures & SE

Command Options

• commands can be prefixed with either ‘@’ or ‘-’.

• when prefixed with ‘@’, the command is executed, but not
output to the screen.

• when prefixed with the ‘-’, any error from the command is
ignored and make continues execution, normally it stops
when an error is returned. Useful when one wishes
compilation to continue even though warnings & certain
errors occur.

SOURCE = main.cpp unit1.cpp unit2.cpp
HEADERS = main.h unit1.h unit2.h
OBJECTS = main.obj unit1.obj unit2.obj
CFLAGS = /FE

prog : $(OBJECTS)

-cl $(CFLAGS)prog $(OBJECTS)

main.obj : main.cpp

unit1.obj : unit1.cpp unit1.h

unit2.obj : unit2.cpp unit2.h

output : $(SOURCE) $(HEADERS) #print files

print $< #output altered files.

@echo compilation complete
The @echo suppresses
printing of the echo
command itself, but not
the command’s output.

The @echo suppresses
printing of the echo
command itself, but not
the command’s output.

CS 1704 Intro to Data Structures & Software Eng.

NMAKE 5

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

9A10. NMAKE

Intro Data Structures & SE

Suffix & other rules

• a suffix rule describes how a file ending with a particular
extension (e.g. .obj) is dependent upon a file with the same
prefix, but a different suffix (e.g. .cpp).

• suffix rules allow make’s internal implicit dependencies to be
altered.

Suffix syntax:

.SUFFIXES : .ex1 .ex2
.suffix1 .suffix2 :

command(s)

• the first line adds the extensions to make’s suffix.

• the second line specifies the command sequence required to
form the “second file.ex2” from the first “file.ex1”.

Other options

.IGNORE:

• causes make to ignore the return codes which signal errors
from all commands. Equivalent to prefixing all commands
with a hypen. Imbedded in the makefile.

NMAKE /N

• displays all commands but does not execute them. Useful for
debugging the makefile itself.

NMAKE /F backup

• performs a make upon the specified file instead of the
standard Makefile OR makefile.

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

10A10. NMAKE

Intro Data Structures & SE

Makefile Example

#Makefile for main.cpp, executable: prog.exe

Ignore all error return codes
.IGNORE:

#Include .c & .cpp to the Suffix list
.SUFFIXES: .c .cpp .o .obj

#Define the CPP compiler & options
CPP = cl
CFLAGS = /FE

#Define all files in project
SOURCE = main.cpp unit1.cpp unit2.cpp
HEADERS = main.h unit1.h unit2.h
OBJECTS = main.obj unit1.obj unit2.obj

#recompile all object files in the current
directory that have changed

.cpp.obj .c.o :
$(CPP) $(CFLAGS) $<

prog : $(OBJECTS) #recompile all source files

$(CPP) $(CFLAGS)prog $(OBJECTS)

output : $(SOURCE) $(HEADERS) #print files

print $< #output altered files.

@echo compilation complete

CS 1704 Intro to Data Structures & Software Eng.

NMAKE 6

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

11A10. NMAKE

Intro Data Structures & SE

Makefile Backup Example

#File: backup.mak
makefile to perform automatic backup
of all source files from current
directory # to zip drive mounted as Z:

.SUFFIXES: .cpp .c .h .bak

check if backup needs to be performed
compare all source file time/date stamps
to backup.bak time/date stamp
backup.bak is a dummy 0 length file used to
maintain the last backup time

#define backup file dependencies

.cpp.bak .c.bak .h.bak:

@echo insert the backup zip disk in the Z:
@echo drive in the next 5 secs!
@sleep 5

copy $< Z:

#copy modified source files

touch backup.bak #update dummy

• The sleep and touch commands are UNIX utilities that
have been ported to Windows by Cygnus Solutions, a
Red Hat company.

• They are part of the GNU-Win32 package that may be
downloaded from
http://sources.redhat.com/cygwin/mirrors.html

