NMAKE A10. NMAKE 1 Dependencies A10. NMAKE 2

Definition :
« Microsoft development utility program for keeping a set of . Makeﬁle files are composed of dependency lines followed by
separately compiled files current, (AT&T and Lucent also indented (tab) commands to recreate the files.

maintain versions of nmake). Dependency line format

+ Eliminates unnecessary compilations in large programs.

« Similar to the UNIX “make” command. NMAKE however .
maintains state information for future executions. recreation command

target files : prerequisite files

* Integrated into the Microsoft visual development environment.

recreation command

RO QTG » The “target files” is a blank separated list of files that are

* Reads a text file (“Makefile” in the current directory) that dependent upon the prerequisite file list specified after the
describes the relationships (dependencies) among all of the colon, (the first target files’ name must start in column 1).
files that compose the program under development & the
system commands required to recreate (compile, link)
program files when changes have occurred.

* The recreation commands are any valid system commands,
must be tab indented on consecutive lines immediately
following the dependency lists. (Colon delimiting target &

* Queries the OpSys to determine which files have been altered prerequisite files is required.)

ince the last make (last ti fi . . .
ALES O LREIA.S (D O R VLIS) QUi * NMAKE executes the recreation commands if any of the

» Executes the commands to reform all files that are dependent target files have a date or time stamp that is older than any of
upon the altered files. the prerequisite files.

* NMAKE scans through source files to locate implicit
Web References: prerequisites, such as header files in C++ programs.

http://msdn.microsoft.com/library/devprods/vs6
/visualc/vcug/_asug_overview.3a_ .nmake reference.htm

http://www.bell-labs.com/project/nmake/tutorial/

Intro Data Structures & SE Intro Data Structures & SE

Simple Example A10. NMAKE 3

prog : main.obj unitl.obj unit2.obj
cl /Feprog main.obj unitl.obj unit2.obj
main.obj : main.cpp
cl /c main.cpp
unitl.obj : unitl.cpp unitl.h
cl /c unitl.cpp
unit2.obj : unit2.cpp unit2.h

cl /c unit2.cpp

The first line gives the dependency of the executable image
(prog) upon the object (.obj) files. The command lines calls
cl (MS command line C++ compiler) to perform the linking.

The following lines gives the object dependencies upon the
source, and the ¢/ commands to recompile the source files.

If only one source file has been changed nmake will
recompile only that file & then re-link the object files.

Comments follow a sharp (#) on any line.

A target file may follow make on the command if it is
desired to remake only a portion of the system, otherwise
make starts with the first dependency line.

Intro Data Structures & SE

Dependency Hierarchy A10. NMAKE 4

NMAKE builds an implicit dependency hierarchy for the system:

* The dependency hierarchy is checked by NMAKE to
determine if a file is up-to-date when it is used in a
prerequisite list.

* If prog must be recreated, it checks the dependency tree to
determine if main.obj, unitl.obj & unit2.obj must be
reformed first.

Intro Data Structures & SE

Implicit Dependency Rules A10. NMAKE 5

» make contains internal (automatic) rules for producing
object files (.obj) from C language source files (.cpp).

» Given that the previous source files were cpp files then the
makefile could be reduced taking advantage of the internal
make rules:

prog : main.obj unitl.obj unit2.obj
cl /Feprog main.obj unitl.obj unit2.obj
main.obj : main.cpp

unitl.obj : unitl.cpp unitl.h

unit2.obj : unit2.cpp unit2.h

» the commands to call the C compiler are unnecessary,
since make can form them itself.

» make can be modified (or taught) the corresponding
dependency rules for any language/utility

Intro Data Structures & SE

Variables & Macros A10. NMAKE 6

» make allows the user to assign strings to variables.
syntax: variable = string

* amacro invocation or string usage occurs when the variable
is preceded by a $ and enclosed in parenthesis.

* make replaces the variable with the string before executing
the command.

Example:

SOURCE = main.cpp unitl.cpp unit2.cpp
HEADERS = main.h unitl.h unit2.h

OBJECTS = main.obj unitl.obj unit2.obj

prog : $(OBJECTS)
cl /Feprog $(OBJECTS)

main.obj : main.cpp
unitl.obj : unitl.cpp unitl.h
unit2.obj : unit2.cpp unit2.h

output : $(SOURCE) $ (HEADERS) #print files
print $ (SOURCE)
print $ (HEADERS)

Intro Data Structures & SE

Predefined Variables A10. NMAKE 7 Command Options A10. NMAKE 8

cC default value is the name of the system C compiler, cl » commands can be prefixed with either ‘@’ or ‘-’.

+ when prefixed with ‘@’, the command is executed, but not

CFLAGS C compiler options, initially null, sometimes set to -O output to the screen.

5 piie Gompl A » when prefixed with the ‘-, any error from the command is

ignored and make continues execution, normally it stops
$< list of the prerequisite files that are out-of-date when N G retgrned. Useful when onc wishes ‘

with respect to the target of the current rule. compilation to continue even though warnings & certain
errors occur.

. . . SOURCE = main.cpp unitl.cpp unit2.cpp
The previous output dependency could be rewritten: HEADERS = main.h unitl.h unit?.h
OBJECTS = main.obj unitl.obj unit2.obj
CFLAGS = /FE

output : $(SOURCE) $ (HEADERS) #print files

print $< #output altered files.
prog : $(OBJECTS)

-cl $(CFLAGS)prog $ (OBJECTS)
* note that the file output need not exist.

« if make encounters a nonexistent file it automatically main.obj : main.cpp
executes the associated command sequence, but does not unitl.obj : unitl.cpp unitl.h

create the file. unit2.o0bj : unit2.cpp unit2.h

* in order to prevent all the files from being printed each time
make is executed, a dummy “output” file must be created in

order to maintain a time & date stamp for make to check
against. print $< #output altered files.

output : $(SOURCE) $ (HEADERS) #print files

The @echo suppresses
printing of the echo
command itself, but not
the command’s output.

@echo compilation complete ®

Intro Data Structures & SE Intro Data Structures & SE

Suffix & other rules A10. NMAKE 9

+ a suffix rule describes how a file ending with a particular
extension (e.g. .obj) is dependent upon a file with the same
prefix, but a different suffix (e.g. .cpp).

* suffix rules allow make’s internal implicit dependencies to be
altered.

Suffix syntax:

SUFFIXES : .exl .ex2
suffix] .suffix2 :
command(s)

« the first line adds the extensions to make’s suffix.

* the second line specifies the command sequence required to
form the “second file.ex2” from the first “file.ex1”.

Other options
IGNORE:

+ causes make to ignore the return codes which signal errors
from all commands. Equivalent to prefixing all commands
with a hypen. Imbedded in the makefile.

NMAKE /N

« displays all commands but does not execute them. Useful for
debugging the makefile itself.

NMAKE /F backup

 performs a make upon the specified file instead of the
standard Makefile OR makefile.

Intro Data Structures & SE

Makefile Example A10. NMAKE 10

#Makefile for main.cpp, executable: prog.exe

Ignore all error return codes

. IGNORE:

#Include .c & .cpp to the Suffix list
.SUFFIXES: .c .cpp .0 .obj

#Define the CPP compiler & options
CPP = cl

CFLAGS = /FE

#Define all files in project

SOURCE = main.cpp unitl.cpp unit2.cpp
HEADERS = main.h unitl.h unit2.h
OBJECTS = main.obj unitl.obj unit2.obj

#recompile all object files in the current
directory that have changed

.cpp.obj .c.o :
$ (CPP) $(CFLAGS) $<

prog : $(OBJECTS) #recompile all source files
$(CPP) $(CFLAGS)prog $(OBJECTS)

output : $(SOURCE) $(HEADERS) #print files
print $< #output altered files.

@echo compilation complete

Intro Data Structures & SE

Makefile Backup Example A10. NMAKE 11

#File: backup.mak

makefile to perform automatic backup
of all source files from current
directory # to zip drive mounted as Z:

.SUFFIXES: .cpp .c .h .bak

check if backup needs to be performed

compare all source file time/date stamps

to backup.bak time/date stamp

backup.bak is a dummy 0 length file used to
maintain the last backup time

#define backup file dependencies
.cpp.bak .c.bak .h.bak:

@echo insert the backup zip disk in the Z:
@echo drive in the next 5 secs!
@sleep 5

copy $< Z:
#copy modified source files

touch backup.bak #update dummy

* The sleep and touch commands are UNIX utilities that
have been ported to Windows by Cygnus Solutions, a
Red Hat company.

* They are part of the GNU-Win32 package that may be
downloaded from
http://sources.redhat.com/cygwin/mirrors.html

Intro Data Structures & SE

