
CS 1704 Intro Data Structures and Software Engineering Test 2
Fall 2001

Form: A Page 1 of 13

READ THIS NOW!

• Print your name in the space provided below. Code Form A on your Opscan. Check your SSN and Form
Encoding!

• Choose the single best answer for each question — some answers may be partially correct. If you mark
more than one answer, it will be counted wrong.

• Unless a question involves determining whether given C++ code is syntactically correct, assume that it is
valid. The given code has been compiled and tested, except where there are deliberate errors. Unless a
question specifically deals with compiler #include directives, you should assume the necessary header
files have been included.

• Be careful to distinguish integer values from floating point (real) values (containing a decimal point). In
questions/answers which require a distinction between integer and real values, integers will be
represented without a decimal point, whereas real values will have a decimal point, [1704 (integer),
1704.0 (real)].

• The answers you mark on the Opscan form will be considered your official answers.
• When you have completed the test, sign the pledge at the bottom of this page and turn in the test.
• This is a closed-book, closed-notes examination. No calculators or other electronic devices may be used

during this examination. You may not discuss (in any form: written, verbal or electronic) the content of
this examination with any student who has not taken it. You must return this test form when you
complete the examination. Failure to adhere to any of these restrictions is an Honor Code violation.

• There are 25 questions, equally weighted. The maximum score on this test is 100 points.

Do not start the test until instructed to do so!

Print Name (Last, First) Solution

Pledge: On my honor, I have neither given nor received unauthorized aid on this examination.

 N. D. Barnette

 signature

CS 1704 Intro Data Structures and Software Engineering Test 2
Fall 2001

Form: A Page 2 of 13

I. Class Pointers

For the following 4 questions, assume the following declarations:

class Item; //forward declaration
typedef Item* ItemPtr;
class Item {
 private:
 ItemPtr link;
 char data;
 public: //member functions
 void TestFN();
};

//inside the Item member function TestFN

Item obj; //#1
obj.data = ‘A’; //#2
obj.link = new Item; //#3
*this = obj; //#4
data = ‘B’; //#5
obj.link->link = &obj; //#6
link->data = ‘C’; //#7
link->link = NULL; //#8

1. From inside the same member function as the above code,
 what is the type, (not value), of the expression at the right:

1) NULL
2) Item

3) ItemPtr
4) obj

5) char*
6) None of the above

2. From inside the same member function as the above code, which of the following statements could be used to link, (i.e.,

point), the Item object containing the char ‘C’ to the Item object containing the char ‘B’?

1) obj->link = this;
2) obj.link = link;
3) link->link = this;

4) this->link = link;
5) *this.link = &obj;
6) None of the above

3. From inside the same member function as the above code, what would be the
 type, (not value), of the expression at the right?

1) NULL
2) Item

3) ItemPtr
4) obj

5) char*
6) None of the above

4. Assume that the Item object which invokes the TestFN member function has not been allocated dynamically and

that the value of the link pointer inside of it is NULL immediately before TestFN function is invoked. Note that the
Item class relies upon the default (language supplied) destructor, (i.e. no destructor has been explicitly implemented).
Considering just the code above, after the member function, TestFN, has completed execution, how many memory
leaked Item objects would still exis t, (orphaned), in memory?

1) 1
2) 2

3) 3
4) 4

5) 0
6) None of the above

*this

(*this).link->link

A
B

?

this

A

C

?

obj #1

#2

#3

#4
#5

#4

#6

#7

#8

CS 1704 Intro Data Structures and Software Engineering Test 2
Fall 2001

Form: A Page 3 of 13

II. Linked List Class Manipulation

Consider the linked list class and list node declarations given below:

class ItemType {
private:
 int Value;
public:
 ItemType();
 ItemType(int newValue);
 void setValue(int newValue);
 int getValue() const ;
};

class LinkNode {
private:
 ItemType Data;
 LinkNode* Next;
public:
 LinkNode();
 LinkNode(ItemType newData);
 bool setNext(LinkNode* newNext);
 bool setData(ItemType newData);
 ItemType getData() const;
 LinkNode* getNext() const;
};

LinkNode *Head, *P, *Q;

Assume that the member functions above have been implemented correctly to carry out their intended task. Given the initial
list structure below:

For the next 4 questions, select from the code segments on the following page, the segment that would transmogrify the above
list into each of the lists shown below. Assume the list structure above as your starting point (for each question). Choose
from the possible answers given on the following page.

5.

6.

7.

8.

1 Head 6 28

P Q

496 8128 •

Head 6 28 496 •

1 Head 6 28 496 8128

8128 Head 496 28 6 1 •

Head 1 •

1

3

8

2

CS 1704 Intro Data Structures and Software Engineering Test 2
Fall 2001

Form: A Page 4 of 13

II. Linked List Class Manipulation (continued)

Select from the possible answers for the 4 questions given on the previous page.

1) LinkNode *R=Head;
 Head = R->getNext();
 R->setNext(R->getNext()->getNext());
 delete R;
 R = Q->getNext();
 Q->getNext()->
 setNext(R->getNext()->getNext());
 delete R->getNext();

2) LinkNode *R=Head;
 delete R->getNext();
 R = P = Q = NULL;
 Head->setNext(R);

3) LinkNode *T=Head;
 while (T->getNext()->getNext()

 != NULL) {
 T = T->getNext();

 } //while
 T->getNext()->
 setNext(Q->getNext()->getNext());
 T = T->getNext();

Q = T->getNext();

4) LinkNode *T=NULL;
 while (P->getNext()!= NULL) {
 T = P;
 P = P->getNext();
 delete T;
 } //while
 delete P;
 P = Q = T = NULL;
 Head->setNext(P);

5) for (int i=0; i<3; i++)

 P = P->getNext();
 delete P->getNext();
 P->setNext(NULL);
 LinkNode *T=Head->getNext();
 Head->setNext(
 Head->getNext()->getNext());

delete T;
T = Head->getNext();

6) for (Q=P; P != NULL; P=Q) {

 Q = Q->getNext();
 delete P;

 }
Head = P;

R->1
Head->6
1->28
del 1
R->496

496-> •

R->1
del 6
RPQ-> •
1-> •

del 1
del 6
del 28
del 496
P->8128
del 8128
PQT-> •

T->1

T->496

8128->8128
T->8128

P->496
del 8128
496 -> •
T->6
1->28

del 6

del 1
del 6
del 28
del 496
del 8128

CS 1704 Intro Data Structures and Software Engineering Test 2
Fall 2001

Form: A Page 5 of 13

7) LinkNode *R=Head->getNext();
 Head = P->getNext();
 delete P;
 P = NULL;
 R = R->getNext()->getNext();
 Q-> setNext(R->getNext());
 delete R;
 R = NULL;
 Q = Q->getNext();

8) opp(Head, Q->getNext()->getNext());
 // . . .
void opp(LinkNode* x, LinkNode* y)
{
 LinkNode* t;
 if (x != NULL && y != NULL && x != y) {
 for (t=x; (t!=NULL &&
 t->getNext()!=y);)
 t = t->getNext();
 int s = x->getData().getValue();
 x->setData(y->getData().getValue());
 y->setData(s);
 opp(x->getNext(), t);
 }//if
}//opp

9) delete [4] Head->getNext();
 Head->setNext(NULL);

10) None of the above

R->6
Head->6
del 1
P-> •
R->496
28->8128
del 496
R-> •
Q->8128

x->1
y->8128

t->Next->y
swap x’s &
y’s values

swap next 2

ERROR:
not an
array
pointer

CS 1704 Intro Data Structures and Software Engineering Test 2
Fall 2001

Form: A Page 6 of 13

III. Separate Compilation

For the next two questions, consider a C++ program composed of three cpp files and three corresponding header files, as
shown below. All function calls are shown, as are all include directives, type declarations and function prototypes. In
the source and header files, there should be only one physical occurrence of a function prototype, and one physical
occurrence of a type declaration. Do not assume that any preprocessor directives are used but not shown.

// main.h
//. . .
class MainClass {
 //. . .
};

// main.cpp
#include "main.h"
#include "ClassToo.h"
#include "Test2.h"
//. . .
void main() {
 ClassToo C;
 Test2(C);
 //. . .
}

// Test2.h
//. . .
void Test2(ClassToo C2obj);
//. . .

// Test2.cpp
#include "Test2.h"
//. . .
void Test2(ClassToo C2obj) {
 //. . .
}

// ClassToo.h
#include "main.h"
//. . .
class ClassToo {
 private:
 MainClass Mobj;
 //. . .
};

// ClassToo.cpp
#include " ClassToo.h"
//. . .
 // ClassToo member Functions
//. . .

9. If the organization shown above is used, and no preprocessor directives are added, what will the compiler complain

about when main.cpp is compiled?

1) Nothing.
2) Multiple definitions for MainClass.
3) Multiple definitions for ClassToo.
4) Multiple definitions for Test2().
5) Both 2, 3 and 4.

6) Undeclared identifier MainClass.
7) Undeclared identifier ClassToo.
8) Undeclared identifier Test2.
9) None of these.

10. If the organization shown above is used, and no preprocessor directives are added, what will the compiler complain

about when Test2.cpp is compiled?

1) Nothing.
2) Multiple definitions for ClassToo.
3) Multiple definitions for Test2().
4) Both 2 and 3.
5) Undeclared identifier ClassToo.

6) Undeclared identifier Test2().
7) Both 5 and 6.
8) 2, 3, 5, and 6
9) None of these.

11. (True or False) The order of the #include statements in main.cpp does not matter, (i.e. if #include

"Test2.h" is listed above #include "main.h" the same compilation as above would result?

1) True 2) False

9: When main.cpp is compiled the
inclusion of ClassToo.h results in
a second copy of main.h being
included and thus the compiler
encounters a second definition for
MainClass.

10: When Test2.cpp is
compiled, the compiler sees
that the Test2() function
accepts a ClassToo
parameter. Since
ClassToo.h has not been
included the definition is
missing from the Test2.cpp
scope.

11: If Test2.h were placed above main.h the compiler would also complain about an undecalared
identifier ClassToo in the Test2() prototype since the prototype declaration would now precede the
ClassToo declaration in main.cpp.

CS 1704 Intro Data Structures and Software Engineering Test 2
Fall 2001

Form: A Page 7 of 13

III. Separate Compilation (continued)

Consider the function call tree:

Assume that the software system is to be decomposed for compilation into three separate source files: main.cpp,
Calvin.cpp, and Susie.cpp, and accompanying header files of the same names. The function definitions are to be
placed in the various cpp files as shown below along with the corresponding code for the files.

FN definition locations Scott separate compilation unit

Definition for: Goes in:
 //Calvin.h

void Calvin (/* parameters */);
main() main.cpp

Rosalyn() main.cpp

Calvin() Calvin.cpp

Hobbes() Calvin.cpp

Susie() Susie.cpp

// Calvin.cpp
#include “Calvin.h”
void Hobbes(/* parameters */);

void Calvin (/* parameters */){
// Calvin’s code
 Susie();
}

void Hobbes (/* parameters */){
// Hobbes’s code
 Susie();

Susie separate compilation unit main separate compilation unit
//Susie.h
void Susie (/* parameters */);

//main.h
/* main declarations */

// Susie.cpp
#include “Susie.h”

void Susie (/* parameters */){
// Susie’s code

}

//main.cpp
#include “main.h”
void Rosalyn (/* parameters */);

void main() {

 Hobbes (/* parameters */);
 Rosalyn (/* parameters */);
 Calvin (/* parameters */);

}

void Rosalyn (/* parameters */){
// Rosalyn’s code

}

main()

Hobbes()

Rosalyn ()

Calvin()

Susie()

CS 1704 Intro Data Structures and Software Engineering Test 2
Fall 2001

Form: A Page 8 of 13

III. Separate Compilation (continued)

Assume that there are no global type and no global constant declarations, (and also no global variables of course). Answer
the following questions with respect to the above compilation organization and the goals of achieving information hiding and
restricted scope:

12. Assuming the partial code above was completed and contained no syntax errors, if only “Calvin.cpp” is compiled

(not built) within Microsoft Visual C++, which of the following type of errors would occur:

1) Compilation errors: missing Hobbes() prototype
2) Compilation error: undeclared identifiers ‘Susie’
3) Compilation Error: missing main function.
4) No errors would be generated.

13. Which of the following prototypes should be moved from its unit source.cpp file to the unit header.h file?

1) void Rosalyn (/* parameters */); 3) void Calvin (/* parameters */);

2) void Hobbes(/* parameters */); 4) void Susie (/* parameters */);
Since Hobbes() is called by main() which is in another .cpp file.

14. In addition to the include directives listed above, where else should “Susie.h” be included?

(1) main.h (3) Calvin.h = 0.5(5) Susie.h
(2) main.cpp (4) Calvin.cpp (6) nowhere else

15. In addition to the include directives listed above, where else should “Calvin.h” be included?

(1) main.h = 0.5 (3) Susie.h (5) Calvin.h
(2) main.cpp (4) Susie.cpp (6) nowhere else

16. Assume the partial code above was completed and contained no compilation or linking errors and that the files were

contained within a MSVC project. How many different object files (.obj) would the MSVC project build produce?

(1) 1 (2) 2 (3) 3 (4) 4
(5) 5 (6) 6 (7) 7 (8) 0

12: When Calvin.cpp is
compiled the call to Susie(),
[shown on the call tree],
requires that the prototype for
Susie be in the same scope.

14: Susie() is called by Calvin()
so her prototype must be in the
same scope as Calvin.

15: Calvin() is called by main()
so his prototype must be in
the same scope as main.

16: An object file is only produced for
each separate .cpp file.

CS 1704 Intro Data Structures and Software Engineering Test 2
Fall 2001

Form: A Page 9 of 13

IV. Object Manipulations

Assume the following class declaration and implementation:

class Watterson {
private:
 char* comic;
public:
 Watterson (char com=’*’);
 char getComic() const;
 void setComic(char com);
 bool operator==(
 const Watterson& watt) const;
 ~Watterson();
};

Watterson::Watterson (char com) {
 comic = new char(com);
}

char Watterson::getComic() const {
 return(*comic);
}

void Watterson::setComic(char com) {
 *comic = com;
}

bool Watterson::operator==
 (const Watterson& watt) const {
 return (int(*comic) ==
 int(*(watt.comic)));
}

Watterson::~Watterson () {
 delete comic;
}

 Given the following code:

 char Wormwood (Watterson Moe);

 void main() {
 Watterson Calvin, Hobbes(‘H’);
 Watterson Susie;

Susie = Calvin;
Susie.setComic(‘+’);

 cout << "Contents of Calvin is:" << Calvin.getComic() << endl; //LINE 1
 cout << "Contents of Susie is:" << Susie.getComic() << endl; //LINE 2
 cout << "Contents of Hobbes is:" << Wormwood(Hobbes) << endl; //LINE 3
 cout << "Contents of Hobbes is:" << Hobbes.getComic() << endl; //LINE 4
 }

 char Wormwood (Watterson Moe) { return (Moe.getComic()); }

For the next 4 questions, select your answers from the following:

1) ‘*’
2) ‘+’

3) ‘H’
4) Execution Error

5) None of these

17. What character is output by the call Calvin.getComic() in LINE 1 above?

18. What character is output by the call Susie.getComic() in LINE 2 above?

19. What character is output by the call Wormwood(Hobbes) in LINE 3 above?

20. What character is output by the call Hobbes.getComic() in LINE 4 above?

2

2

3

4

*
+

Calvin

H

*

Hobbe

Susie

Default construction
of Calvin & Susie
allocates an ‘*’ char.
Construction of
Hobbes allocates an
‘H’ char. Susie
assigned to Calvin
results in a member-
wise shallow copy
(& a memory leak)
and pointer aliases.
Setting Susie’s
comic to a plus
results in Calvin’s
also being set due to
the pointer alias.

CS 1704 Intro Data Structures and Software Engineering Test 2
Fall 2001

Form: A Page 10 of 13

21. (True/False) The above code contains a memory leak.

 1) True 2) False
V. Recursion

22. The execution of a recursive function results in activation records for the function being created and stored where?

1) Heap
2) Runtime Stack
3) Registers

4) Text Segment
5) Data Segment
6) None of the above

23. Recursive tree trace

test2(->1, ->8128)

test2(->6, ->496) test2(->496, -6)

test2(->28, ->28) test2(->28, ->28)

28 28

558

test2
(->8128, ->1)

test2
(->1, ->8128)

Recursive call with same
parameters as the root call
results in infinite

CS 1704 Intro Data Structures and Software Engineering Test 2
Fall 2001

Form: A Page 11 of 13

Consider the linked list class and list node declarations given below:

class ItemType {
private:
 int Value;
public:
 ItemType();
 ItemType(int newValue);
 void setValue(int newValue);
 int getValue() const;
};

class LinkNode {
private:
 ItemType Data;
 LinkNode *Next, *Prev;
public:
 LinkNode();
 LinkNode(ItemType newData);
 bool setNext(LinkNode* newNext);
 bool setPrev(LinkNode* newPrev);
 bool setData(ItemType newData);
 ItemType getData() const;
 LinkNode* getNext() const;
 LinkNode* getPrev() const;
};

LinkNode *Head;

Assume that the member functions above have been implemented correctly to carry out their intended task. Given the initial
list structure:

23. What is the value returned by the call cout << test2(Head, Head->getPrev()); to the following recursive
function:

int test2 (LinkNode *L, LinkNode *R) {

if ((L == NULL) || (R == NULL)) return 0;
else if (L->getData().getValue() == R->getData().getValue())
 return (R->getData().getValue());
else {
 int left = L->getData().getValue();
 int right = R->getData().getValue();
 int Lsum = test2(L->getNext(), R->getPrev());
 int Rsum = test2(R->getPrev(), L->getNext());
 return(left + Lsum + Rsum + right);
 }
}

1) 28
2) 531
3) 8128
4) 8659

5) 17318
6) 25977
7) 34636
8) 43295

 9) 51954
10) None of the above
(prev page has trace)

1 Head 6 28 496 8128

Next Prev

CS 1704 Intro Data Structures and Software Engineering Test 2
Fall 2001

Form: A Page 12 of 13

VI. Recursion (continued)

 For the next two questions, consider the following recursive function:

int Lie(int i)
{
 if (i < 9)
 return(13) ;
 else if (i < 10)
 return(21) ;
 else
 return(Lie(i-2) + Lie(i-1)) ;

} // Lie

24. What is returned from the call: Lie (15) ? (Hint: don’t do the same work twice.) (next page has trace)

1) 13
2) 21
3) 34

4) 55
5) 89
6) 144

7) 233
8) 377
9) 610
10) None of the above

25. Not counting the original call, how many recursive calls are made by the execution of: Lie (15) ?

1) 1
2) 2
3) 3

4) 5
5) 8
6) 13

7) 21
8) 34
9) 55
10) None of the above

CS 1704 Intro Data Structures and Software Engineering Test 2
Spring 2000

Form: A Page 13 of 13

24/25 Recursive tree trace

15

13 14

11

9 10

21 34

55

8 9

13 21

89

144

12

10 11

34 55

8 9

13 21

9 10

34

8 9

13 21

21

12

10 11

34 55

8 9

13 21

9 10

34

8 9

13 21

21

89

13

144

233

377

15 recursive
calls left
branch

25 recursive
calls right
branch

Identical to left branch

