
CS 1704 Intro Data Structures and Software Engineering Test 1
Fall 2001

READ THIS NOW!

• Print your name in the space provided below.
• Print your name and ID number on the Opscan form; be sure to code your ID number on the Opscan

form. Code Form A on the Opscan.
• Choose the single best answer for each question — some answers may be partially correct. If you mark

more than one answer, it will be counted wrong.
• Unless a question involves determining whether given C++ code is syntactically correct, assume that it

is valid. The given code has been compiled and tested, except where there are deliberate errors. Unless
a question specifically deals with compiler #include directives, you should assume the necessary
header files have been included.

• Be careful to distinguish integer values from floating point (real) values (containing a decimal point). In
questions/answers which require a distinction between integer and real values, integers will be
represented without a decimal point, whereas real values will have a decimal point, [1704 (integer),
1704.0 (real)].

• The answers you mark on the Opscan form will be considered your official answers.
• When you have completed the test, sign the pledge at the bottom of this page and turn in the test.
• This is a closed-book, closed-notes examination. No calculators or other electronic devices may be used

during this examination. You may not discuss (in any form: written, verbal or electronic) the content
of this examination with any student who has not taken it. You must return this test form when you
complete the examination. Failure to adhere to any of these restrictions is an Honor Code violation.

• There are 25 questions, equally weighted. The maximum score on this test is 100 points.

Do not start the test until instructed to do so!

Print Name (Last, First) Solution

Pledge: On my honor, I have neither given nor received unauthorized aid on this examination.

 N. D. Barnette
 signature

Form: A Page 1 of 7

CS 1704 Intro Data Structures and Software Engineering Test 1
Fall 2001

I. Design Representation

Use the following partial Structure Chart diagrams below as answers for the next 2 questions:

Miranda

Erwin

Pitr

Sid

Ufriend

 (1) (2) (3) (4)

Pitr

SidErwin

Miranda

Ufriend

Sid

Pitr

Erwin

Miranda

Ufriend

SidErwin

Miranda Pitr

Ufriend

Do not make any assumption about variables that are not shown on the chart. Given the following variable definitions:

bool Erwin, Sid, Greg;
int Pitr, Miranda;

#1 Which of the above structure chart diagrams for Ufriend()correctly models the code segment below? Analysis:

 Greg is NOT passed so it has no representation on the
structure chart. The reference parameters, Erwin & Sid,
could be either output or input/output parameters there
is no way to tell from the partial code segment. The
value parameters, Miranda & Pitr, can only be
parameters. Since only Pitr is used for control the other
parameters must be data parameters.

input

 Given those observations, only structure chart above

if (Greg)
Ufriend(Erwin, Sid, Miranda, Pitr);

#2 W

Form
void Ufriend(bool& Erwin, bool& Sid,
int Miranda, int Pitr) {

while (Pitr > 0)
//code under control of while
. that satisfies the analysis is (3)

hich of the above structure chart diagrams for Ufriend()correctly models the code segment below?

Analysis:
 The reference parameters, Erwin & Sid, could be either

output or input/output parameters, however since Erwin
Ufriend (Erwin, Sid, Miranda, Pitr);
if (Erwin)

//code under control of if

is used for control in both functions it must be an
inout/output control parameter. The value parameters,
Miranda & Pitr, can only be input parameters. Since
only Erwin is used for control the other parameters must
void Ufriend(bool& Erwin, bool& Sid,
int Miranda, int Pitr) {

while (Erwin)
//code under control of while
be data parameters.

Given those observations, only structure chart above that

satisfies the analysis is (1).

: A Page 2 of 7

CS 1704 Intro Data Structures and Software Engineering Test 1
Fall 2001

II. Pointers

Assume the following declarations:

const int SIZE = 10;
int x = 0, y[SIZE]={0};

int* a; int* b;

Use the responses:

(1) Valid (2) Invalid

for the next 6 questions (#3 - #9). Considering each statement below independently, determine whether each statement
would compile (not link) without errors after the statement:

 a = new int[SIZE];

#3

delete [] y; (2) Invalid (Static Arrays cannot be deallocated.)
#4

a = NULL; (1) Valid

#5
y++; (2) Invalid (Array pointers are constant)

#6
a++; (1) Valid

#7
b = &a + SIZE; (2) Invalid (&a is a pointer to a pointer, i.e. int**,

the resulting expression cannot be assigned to be
which is just a pointer, i.e. int*)

#8
*(a + 1) = y[SIZE – SIZE]; (1) Valid

#9 Identify the most serious type of logical error that occurs as a result of the statements:

(1) Alias pointer exists (2) Dangling Reference exists
(3) Illegal memory address reference (4) Memory garbage/leak exists
(5) Undefined pointer dereferenced (6) No logical error occurs

#10 Identify the most serious type of logical error that occurs as a result of the statements:

(1) Alias pointer exists (2) Dangling Reference exists
(3) Illegal memory address reference (4) Memory garbage/leak exists
(5) Undefined pointer dereferenced == 0.5 credit (6) No logical error occurs

p is NULL when it
is dereferenced.

Form: A
int *p = new int[5];
int *q = p;
p--;
delete [] q;
p = q = NULL;
cout << *p << endl;
int *p = new int[5];
int *q = p;
p--;
delete [] q;
cout << p << endl;
p = q = NULL;
Page 3 of 7

CS 1704 Intro Data Structures and Software Engineering Test 1
Fall 2001

#11 What value is printed by the code fragment below?

const int SIZE = 5;
int* x; int* y; int i;

x = new int[SIZE]; // assume allocation starts at address 00002000

for (i = 0; i < SIZE; i++)

x == &x[0] which is 00002000,
y = x + 1 == (&x[0]) + 1, which
is pointer addition. Since x is an
int array and since each int takes
4 bytes of memory:
y = x + 1 == 00002004

x[i] = i;
y = x + 1;
cout << “ y = ” << &y << endl;

(1) 1 (2) 00002001 (3) 00002004

(4) 4 (5) 00002008 (6) None of the above

Consider the following code:

void GetMem (int* const arr,
int size, int init);

const int SIZE = 10;
void main() {
int* a;

GetMem(a, SIZE, -1);

for (int i =0; i < SIZE; i++)
cout << a[i] << “ ”;

delete [SIZE] a;
}

//allocate array memory & initialize
void GetMem(int* const arr,

int size, int init)
{
arr = new int[size]; //get new array
for (int* i=&(arr[0]); size>0; i++, size--)

*i = init; //initialize
return;

}

#12 In the code above, how is the array int pointer variable a being passed to the GetMem() function?

 (1) by value (2) by reference (3) by const reference
 (4) as a const pointer (5) as a pointer to a const target (6) as a const pointer to a const target
 (7) none of the above

#13 Unfortunately the above call to GetMem() may not function as intended. Select the statement below that best
describes how to fix the problem.

(1) the size parameter must not be decremented and used for loop control termination, a temporary local variable

should be defined and used for this purpose.

(2) the -1 parameter must not be passed as the init parameter to prevent it from being corrupted when the init
parameter is decremented.

(3) the integer pointer parameter, a, must be passed as a pointer to a constant target to prevent the for loop in

GetMem() from accidentally resetting the array dimension when size is decremented.

(4) the integer pointer parameter, a, must be passed as a reference pointer parameter to allow the changes
made by GetMem() to be performed and prevent an illegal assignment occurring when the function is
compiled.

 (5) none of the above (GetMem() does function as intended)

Form: A Page 4 of 7

CS 1704 Intro Data Structures and Software Engineering Test 1
Fall 2001

Use the responses:

(1) Valid (2) Invalid

for the next 6 questions (#14 - #19). Considering each numbered question statement in the function below separately,
determine whether each statement would be valid or invalid:

Assume the following function declarations:

const int SIZE = 6;

void main() {

double a[6] = {1.0, 2.0, 3.0, 4.0, 5.0, 6.0};

double *q = new double[SIZE];
double *r = new double[SIZE];
double *s = new double[SIZE];

c is a constant pointer to an int
target thus its pointer value can
NOT be re-assigned.

double* const c = r;
c = a; //#14: (1)Valid or (2)Invalid ?

c[0] = 15.0; //#15: (1)Valid or (2)Invalid ?

b is a constant pointer to a
constant target neither it nor its
target can be re-assigned.

const double* const b = q;
b = a; //#16: (1)Valid or (2)Invalid ?

b[0] = 17.0; //#17: (1)Valid or (2)Invalid ?

const double* d = s;

d is a pointer to a constant, its
target can NOT be re-assigned.

d = a; //#18: (1)Valid or (2)Invalid ?

d[0] = 19.0; //#19: (1)Valid or (2)Invalid ?

}

Form: A Page 5 of 7

CS 1704 Intro Data Structures and Software Engineering Test 1
Fall 2001

III. Class Basics

Assume the following class declaration and implementation:

class GasTank {
private:

bool cap; //true = cap closed
float gals; //number of gallons

public:
GasTank();
GasTank(bool lid, float level);
void OpenCap ();
void CloseCap();
float Capacity();
void Pump (float amount);
void Siphon(float amount);
~GasTank();

};

GasTank:: GasTank (){
cap = true;
gals = 0.0F;

}

GasTank:: GasTank (bool lid,
float level){

cap = lid;
gals = level;

}

GasTank:: ~GasTank () { }

void GasTank:: OpenCap() {
cap = false;

}

void GasTank:: CloseCap() {
cap = true;

}

float GasTank:: Capacity () {
return(gals);

}

void GasTank:: Pump (float amount) {
OpenCap();
gals += amount;
CloseCap();

}

void GasTank:: Siphon (float amount) {
OpenCap();
gals -= amount;
CloseCap();

}

Circle the number of the best answer to each question:

#20 Given the main function at the right, how many functions (not counting

main itself), would be executed by the code?

(1) 1 (2) 2 (3) 3 (4) 4

(5) 5 (6) 6 (6) None of the above

#21 Given that a bool variable is stored in 1 byte and a float variable is store

dynamic memory is allocated by the code in main() in the previous problem

(1) 0 (2) 2 (3) 9 (4) 13 The
abo

(5) 5 (6) 15 (7) None of the above

#22 How many of the member functions in the GasTank class should have been

functions?:

On
fun
of

(1) 1 (2) 2 (3) 3 (4) 4
(5) 5 (6) 6 (7) 7 (8) 0

Form: A
void main() {
GasTank FuelTank;

FuelTank.Pump(20.0F);

}//end main()
d in
? (C

 onl
ve i

 dec

ly th
ctio

the
The constructor executes on
object creation. Pump()
executes and calls OpenCap()
& CloseCap(). The destructor
executes upon yje object going
out of scope.
 4 bytes, how many bytes of
ount carefully.)

y memory in main()
s static memory.

lared as const member

e capacity member
n does not change any

private data members.

Page 6 of 7

CS 1704 Intro Data Structures and Software Engineering Test 1
Fall 2001

#23 How many constructor members does the GasTank class declaration contain?

GasTank contains a default
(parameterless) constructor and
a parameterized constructor.

(1) 1 (2) 2 (3) 3

(4) 4 (5) 0 (6) None of the above

#24 What do the statements at the right accomplish:

(1

void main() {

GasTank CarTank(true, 20.0F);

CarTank.Siphon(20.0F);

}//end main()

(2

(3

(4

(5

(6

(7

(8

#25

(1

(2

(3

(5

(7

Form:
CarTank is instantiated with 20 gal.s of fuel and a closed
cap. Siphon opens the cap, removes the 20 gal.s and closes
the cap. This leaves the CarTank in an empty state the same
as default constructed GasTank object.
) instructs the GasTank object CarTank to fully empty its tank.

) instructs the GasTank object CarTank to open its cap and discharge 20.0 gallons. == 0.5 credit

) instructs the GasTank object CarTank to close its cap and add 20.0 to its gallons.

) instructs the CarTank object GasTank to fully empty its tank.

) instructs the CarTank object GasTank to open its cap and discharge 20.0 gallons.

) instructs the CarTank object GasTank to close its cap and add 20.0 to its gallons.

) the statements contains a syntax error

) None of these

What do the following statements accomplish:

bool EmptyWarning (GasTank tank); //prototype

// in main ()

GasTank CycleTank(true, 3.0F); //Line 1

if (EmptyWarning(CycleTank)) //Line 2

cout << “***Fuel Low***”;

//Function Definition
bool EmptyWarning (const GasTank& tank) { //Line 3

return(tank.gals <= 3.0F); //Line 4

}

) causes the CycleTank object to display a warning message

) causes the GasTank object to display a warning message

) generates a compiler error message on line 1 (4) generate

) generates a compiler error message on line 3 (6) generate

) None of these

A
EmptyWarning() is NOT a
class function member. It
CANNOT access private class
members.
s a compiler error message on line 2

s a compiler error message on line 4

Page 7 of 7

