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READ THIS NOW! 
 

• Print your name in the space provided below.  
• Print your name and ID number on the Opscan form; be sure to code your ID number on the Opscan 

form.  Code Form A on the Opscan; code your section group number: Barnette 8:00TuTh = 1; McQuain 
10:00MWF= 2; or McQuain 12:00MWF = 3. 

• Choose the single best answer for each question — some answers may be partially correct. If you mark 
more than one answer, it will be counted wrong. 

• Unless a question involves determining whether given C++ code is syntactically correct, assume that it 
isvalid.  The given code has been compiled and tested, except where there are deliberate errors. Unless 
a question specifically deals with compiler #include directives, you should assume the necessary 
header files have been included.  

• Be careful to distinguish integer values from floating point (real) values (containing a decimal point). In 
questions/answers which require a distinction between integer and real values, integers will be 
represented without a decimal point, whereas real values will have a decimal point, [ 1704 (integer), 
1704.0 (real)]. 

• The answers you mark on the Opscan form will be considered your official answers. 
• When you have completed the test, sign the pledge at the bottom of this page and turn in the test.   
• This is a closed-book, closed-notes examination.  No calculators or other electronic devices may be used 

during this examination.  You may not discuss (in any form:  written, verbal or electronic) the content of 
this examination with any student who has not taken it.  You must return this test form when you 
complete the examination.  Failure to adhere to any of these restrictions is an Honor Code violation. 

• There are 34 questions, equally weighted. The maximum score on this test is 100 points. 
 

Do not start the test until instructed to do so!    
    

    
    

Print Name (Last, First)  Solution      
 
Pledge:  On my honor, I have neither given nor received unauthorized aid on this examination. 
 
 
 
            
       signature 
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I.  Design Representation  
 
Consider the following incomplete function call and function heading code below: 
 

int snoopy, linus[100];
bool charlie;

peanuts(charlie, snoopy, linus);
if (charlie)

//code under control of if

void peanuts(bool& charlie, int& snoopy, const int linus[]) {

if (charlie)
//code under control of if

 
Do not make any assumption about variables that are not shown on the chart. Which of the following structure chart diagrams 
for peanuts() below correctly models the code segment above, (more than 1 may be a valid model)? 
 
#1 #2 

 
 
 
 
 
 
 
 
 
 
 

 (1) – correct      (1) – correct 
 (2) – incorrect      (2) – incorrect 

 
 
#3  #4 
 
 
 
 
 
 
 
 
 
 
 
 

 (1) – correct      (1) – correct 
 (2) – incorrect      (2) – incorrect 

peanuts 

snoopy charlie

linus

peanuts 

snoopy charlie

linus

peanuts 

snoopy charlie

linus

peanuts 

snoopy charlie

linus

charlie is used 
for control 

snoopy could be 
either Out or InOut 

snoopy is not 
used for control 



CS 1704 Intro Data Structures and Software Engineering Test 1 
Spring 2000  
 

 

Form: A   Page 3 of 9 

II.  Separate Compilation  
 
Consider the function call tree:   
 
 
 
 
 
 
 
 
 
 
 
Assume that the software system is to be decomposed for compilation into three separate source files lucy.cpp,
sally.cpp, and patty.cpp, and accompanying header files of the same names.  The function definitions are to be 
placed in the various cpp files as shown below along with the corresponding code for the files.   
 
FN definition locations patty separate compilation unit

Definition for: Goes in: 
 //patty.h

void patty ( /* parameters */ );
void marcie( /* parameters */ ); 

main( ) sally.cpp

sally( ) sally.cpp

lucy( ) lucy.cpp

patty( ) patty.cpp

marcie( ) patty.cpp

//patty.cpp
#include “patty.h”

void patty ( /* parameters */ ){

// patty’s code

}

void marcie ( /* parameters */ ){

// marcie’s code

}
 
lucy separate compilation unit sally separate compilation unit
//lucy.h
void lucy ( /* parameters */ ); 

//sally.h
void sally ( /* parameters */ ); 

//lucy.cpp
#include “lucy.h”

void lucy ( /* parameters */ ){

// lucy’s code

} 

//sally.cpp
#include “sally.h”

void main() {

lucy ( /* parameters */ );
sally( /* parameters */ );
patty( /* parameters */ );

}

void sally ( /* parameters */ ){

// sally’s code

} 
 

main( )

lucy( ) 

marcie( )

patty( )

sally( ) 
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II.  Separate Compilation (continued)  

Assume that there are no global type and no constant declarations, (and also no global variables of course). Answer the 
following questions with respect to the above compilation organization and the goals of achieving information hiding and 
restricted scope: 
 
#5 Assuming the partial code above was completed and contained no syntax errors, if only “sally.cpp” is compiled 

(not built) within Microsoft Visual C++, which of the following type of errors would occur: 
  
(1) Compilation errors: undeclared identifiers ‘lucy’, ‘patty’
(2) Compilation error: missing main() prototype
(3) Linker Error: multiple identifier redefinitions
(4) No errors would be generated. 
 
#6  Which of the following prototypes should be moved from its unit header file to the unit source file? 

(1) void patty ( /* parameters */ ); (2) void marcie( /* parameters */ );

(3) void lucy ( /* parameters */ ); (4) void sally ( /* parameters */ );

 
#7 In addition to the include directives listed above, where else should “lucy.h” be included? 
 
(1) lucy.h (2) sally.h (3) sally.cpp
(4) patty.h (5) patty.cpp (6) nowhere else
 
 
#8 In addition to the include directives listed above, where else should “patty.h” be included? 
  
(1) lucy.h (2) sally.h (3) sally.cpp
(4) patty.h (5) patty.cpp (6) nowhere else
 
  
#9 In addition to the include directives listed above, where else should “sally.h” be included? 
  
(1) lucy.h (2) sally.h (3) lucy.cpp
(4) patty.h (5) patty.cpp (6) nowhere else
 
  
#10 In how many different files (source and header) should the #include “sally.h” directive occur? 
  
(1) 1 (2) 2 (3) 3 (4) 4
(5) 5 (6) 6 (7) 7 (8) 0
 
 
#11 In order to prevent possible linker errors, which of the following actions should be taken: 

  
(1) Move main() to a separate compilation unit: main.cpp & main.h
(2) Surround each header file contents with compiler directives (#ifndef UNIT_H,

#define UNIT_H, #endif) where UNIT is replaced by the file name.
(3) Combine all functions into one cpp file to achieve faster re-compilations.
(4) #include all header files in every .cpp source file.
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III.  Pointers  
 
Assume the following declarations: 
 

const int SIZE = 10;
int x = 0, y[SIZE]={0};

int* a; int* b;
 
Use the responses: 
 

(1) Valid (2) Invalid
 
for the next 7 questions (#12 - #18). Considering each statement below independently, determine whether each statement 
would compile (not link) without errors after the statement: 
 
 a = new int[SIZE]; 
 
#12  

a->[SIZE-1] = SIZE - 1; (2) Invalid (syntax error)

#13  
b = &y[0]; (1) Valid

#14  
y = a; (2) Invalid (y’s a const pointer)

#15  
*a = SIZE; (1) Valid

#16  
a[0] = SIZE; (1) Valid

#17  
delete [] a; (1) Valid

#18  
delete [] y; (2) Invalid (y wasn’t dynamically allocated)

 
 

#19  Identify the logical error that occurs in the statements: 

(1)  Alias pointer exists   (2)  Dangling Reference exists 
(3)  Illegal memory address reference (4)  Memory garbage exists 
(5)  Undefined pointer dereferenced  (6)  No logical error occurs 
 
 
#20  Identify the logical error that occurs in the code fragment: 

(1)  Alias pointer exists   (2)  Dangling Reference exists 
(3)  Illegal memory address reference (4)  Memory garbage exists 
(5)  Undefined pointer dereferenced (6)  No logical error occurs 
 
(b should have been declared as an int*.) 

int* w = new int[10];
int* z = new int[10];

w = z;

const int SIZE = 10;

int x = 0;
int b = (int*) x;

*b = SIZE; 
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#21  What value is printed by the code fragment below? 
 

const int SIZE = 10;
int* a; int* b;

a = new int[SIZE]; // assume allocation starts at address 00001000

for (int i =0; i < SIZE; i++)
a[i] = i;

b = a;
b++;
cout << “ b = ” << *b << endl;

(1) 00001000 (2) 00001004 (3) 0

(4) 1 (5) 10 (6) None of the above
 
Consider the following code:

void resize (int* ray, int then,
int now);

void main() {
const int SIZE = 10;
int* a;

a = new int[SIZE];

for (int i =0; i < SIZE; i++)
a[i] = i;

resize(a, SIZE, 2*SIZE);
}

//resize actual array to dimension now
void resize (int* ray, int then,

int now)
{

int *tmp, *p, *q;
int i;

p = tmp = new int[now]; //get new array
for (i=0, q=ray; i<then; i++, p++, q++)

*p = *q; //copy from ray to tmp
delete [] ray; //deallocate ray
ray = tmp; //point ray to new

}

#22  In the code above, how is the dynamic array pointer variable  a  being passed to the resize() function? 
 
 (1)  by value  (2) by reference   (3)  by const reference 
 
 (4)  as a const pointer (5)  as a pointer to  a const target (6)  )  as a const pointer to  a const target 

#23  For the resize() function to have its specified effect, which of the following interfaces for  
resize() should be used? 

 
(1) void resize (int* ray, int then, int now); //leave as is

(2) void resize (int& ray, int then, int now);

(3) void resize (int&* ray, int then, int now);

(4) void resize (int*& ray, int then, int now);

(5) void resize (int* const ray, int then, int now);

(6) void resize (const int* ray, int then, int now);

(7) void resize (const int* const ray, int then, int now);

The resize 
function 
changes the 
value of the 
array pointer 
so the pointer 
needs to be 
passed by 
reference. 

First b points to a[0].  After 
the increment operation, b 
points to a[1]. 
 
The output statement 
prints the value of the 
TARGET of b, which is 
a[1], and contains 1. 
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Use the responses: 
 

(1) Valid (2) Invalid
 
for the next 6 questions (#24 - #29). Considering each numbered question statement in the function below, determine whether 
each statement would be valid or invalid: 
 
Assume the following function declaration: 
 
void fn( int* x) {

int a[5] = {0, 1, 2, 3, 4};

const int* b = a;

b[1] = -1; //#24: (1)Valid or (2)Invalid ? Target of b isn’t an array

b = x; //#25: (1)Valid or (2)Invalid ?

int* const c = a;
 

c[2] = -2; //#26: (1)Valid or (2)Invalid ?

c = x; //#27: (1)Valid or (2)Invalid ? c is const, can’t change it

const int* const d = a;
 

d[3] = -3; //#28: (1)Valid or (2)Invalid ? Target of d is const,

d = x; //#29: (1)Valid or (2)Invalid ? and so is d.

}
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IV.  Class Basics 
 
Assume the following class declaration and implementation: 
 
class Flashlight {
private:

bool light; //true - light is on
int battery; //0 depleted

public:
Flashlight ();
Flashlight (bool state, int charge);
void on();
void off();
bool onoff();
void recharge (int charge);
int power();

};

Flashlight::Flashlight() {
light = false; //light off
battery = 5; //full charge

}

Flashlight::Flashlight(bool state,
int charge) {

light = state;
battery = charge;

void Flashlight::on() {
light = true;

}

void Flashlight::off() {
light = false;

}

bool Flashlight::onoff() {
return light;

}

void Flashlight::recharge(int charge) {
battery += charge;

}

int Flashlight::power() {
return battery;

}

}

Circle the number of the best answer to each question: 
 
#30  What does the following statement accomplish: Flashlight Keyring;
 

(1) define an instance of the class Keyring 

(2) define an instance named Keyring of a class Flashlight with unknown status 

(3) define an instance named Flashlight of a class Keyring with unknown status 

(4) define an instance named Keyring of a class Flashlight with its light off and battery fully charged 

(5) define an instance named Flashlight of a class Keyring with its light off and battery fully charged 

(6) None of these 
 
#31  What does the following statement accomplish: Flashlight Compact(true, 1); 
 

(1) define an instance of the class Compact 

(2) define an instance named Compact of a class Flashlight with unknown status 

(3) define an instance named Flashlight of a class Compact with unknown status 

(4) define an instance named Compact of a class Flashlight with its light on and battery minimally charged 

(5) define an instance named Flashlight of a class Compact with its light on and battery minimally charged 

(6) None of these 
 
 

Uses the 
default 
constructor. 

Uses the 
second 
constructor. 
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#32  What do the following statements accomplish: Flashlight Belt(false, 5);
Belt.recharge(-5); 

 
(1) instructs the Flashlight object Belt to fully charge its battery 

(2) instructs the Flashlight object Belt to completely discharge its battery 

(3) instructs the Flashlight object Belt to turn on and stay on until its battery is completely discharged  

(4) the statement contains a syntax error 

(5) None of these 

 

#33  What do the following statements accomplish: 
 

void Blink (Flashlight& hand);

// in main ()

Flashlight hand;

hand.Blink;

 
 

void Blink (Flashlight& hand) {

for (int i=0; i<3; i++)

{ hand.off(); hand.on(); }

hand.off();

}

 

(1) causes the Flashlight object hand to flash three times 

(2) causes the Flashlight object hand to accidentally be left off 

(3) causes the Flashlight object hand be almost depleted of its charge 

(4) the statement contains a compilation error 

(5) None of these 

 
#34  How many default constructors does the above class declaration contain? 

 

(1) 1 

(2) 2 

(3) 2 

(4) 4 

(5) 0 

  

The “default” constructor is the one that 
takes 0 parameters. 


