
CS 1704 Intro Data Structures and Software Engineering Test 2
Spring 2002

Form: A Page 1 of 10

READ THIS NOW!

• Print your name in the space provided below. Code Form A on your Opscan. Check your SSN and
Form Encoding!

• Choose the single best answer for each question — some answers may be partially correct. If you mark
more than one answer, it will be counted wrong.

• Unless a question involves determining whether given C++ code is syntactically correct, assume that it
is valid. The given code has been compiled and tested, except where there are deliberate errors. Unless
a question specifically deals with compiler #include directives, you should assume the necessary
header files have been included.

• Be careful to distinguish integer values from floating point (real) values (containing a decimal point). In
questions/answers which require a distinction between integer and real values, integers will be
represented without a decimal point, whereas real values will have a decimal point, [1704 (integer),
1704.0 (real)].

• The answers you mark on the Opscan form will be considered your official answers.
• When you have completed the test, sign the pledge at the bottom of this page and turn in the test.
• This is a closed-book, closed-notes examination. No calculators or other electronic devices may be used

during this examination. You may not discuss (in any form: written, verbal or electronic) the content
of this examination with any student who has not taken it. You must return this test form when you
complete the examination. Failure to adhere to any of these restrictions is an Honor Code violation.

• There are 25 questions, equally weighted. The maximum score on this test is 100 points.

Do not start the test until instructed to do so!

Print Name (Last, First) Solution

Pledge: On my honor, I have neither given nor received unauthorized aid on this examination.

 N. D. Barnette
 signature

CS 1704 Intro Data Structures and Software Engineering Test 2
Spring 2002

Form: A Page 2 of 10

I. Class Pointers

For the following 4 questions, assume the following declarations:
bond

class Article; //forward declaration
class Article {
private:

Article* bond;
bool fact;

public: //member functions
void statement();
~Article();

};

//inside the Article member function statement
Article* that = new Article; //#1
that->fact = true; //#2
that->bond = that; //#3
Article piece = *that; //#4
piece.bond->fact = false; //#5
piece.bond->bond = &piece; //#6
that = &piece; //#7
that->bond->bond = that; //#8

1. From inside the same member function as the above code,
 what is the type, (not value), of the expression at the right:

1) NULL
2) Article

3) Article*
4) bond

5) bond*
6) None of the above

2. From inside the same member function as the above code, which of the following statements could be used to change
the Article object containing a false fact to a true fact (after the last statement above)?

1) piece.fact = true;
2) that->fact = true;
3) that->bond->fact = true;

4) piece->fact = true;
5) piece->bond->fact = true;
6) None of the above

3. From inside the same member function as the above code, immediately
 before the function terminates, how many Article objects can be accessed?

1) 1
2) 2

3) 3
4) 4

5) 0
6) None of the above

4. Considering just the code above, after the member function, statement(), has completed execution, (i.e. went out
of scope), how many Article objects would the destructor be executed upon?

1) 1
2) 2

3) 3
4) 4

5) 0
6) None of the above

that->bond->bond

Don’t forget to count the invoking object
pointed to by the this pointer, (but never
accessed in the code above).

Only the local static object,
piece, is automatically
destructed.

fact

bond

T
F

that

T

piece #4

#4

#4

#2

#3 #6, #8

#1
#5

✗

✗ #7

this

?

?

CS 1704 Intro Data Structures and Software Engineering Test 2
Spring 2002

Form: A Page 3 of 10

II. Linked List Class Manipulation

Consider the linked list class and list node declarations given below:

class ItemType {
private:

int Value;
public:

ItemType();
ItemType(int newValue);
void setValue(int newValue);
int getValue() const ;

};

class LinkNode {
private:

ItemType Data;
LinkNode* Next;

public:
LinkNode();
LinkNode(ItemType newData);
bool setNext(LinkNode* newNext);
bool setData(ItemType newData);
ItemType getData() const;
LinkNode* getNext() const;

};

LinkNode *Head, *P, *Q;

Assume that the member functions above have been implemented correctly to carry out their intended task. Also, assume
that operations have been executed to create the initial list structure below:

For the next 4 questions, select missing statements for the client, (not class), code segment below to transmogrify the above list
into the list shown below:

LinkNode* x = Head; //initialize x to first node
LinkNode* y = Q->getNext()->getNext(); //5. //initialize y to last node
LinkNode* t;
if (x != NULL && y != NULL && x != y) { //check trivial cases

do { for (int i=0; i < 3; i++) { //test correction

for (t=x; (t!=NULL && t->getNext()!= y);) //hmmm what is
t = t->getNext(); //this for doing?

//swap *x & *y
int s = x->getData().getValue(); //6. //assign s to *x
x-> setData(y->getData().getValue()); //7. //assign *x to *y
y->setData(s);
x = x->getNext(); //increment x
y = __ t ________________________; //8. //decrement y

} while (x->getData().getValue() > y->getData().getValue());

}//if

22 Head 44 66

P Q

77 99 •88

99 Head 88 77

P Q

66 22 •44

This question contains an
error. The correct answer
to 7 should have been:
setData(y->getData());

The setData() expects an
ItemType parameter not an
int, which means the
following statement
y->setData(s);
is also passing the wrong
parameter.

CS 1704 Intro Data Structures and Software Engineering Test 2
Spring 2002

Form: A Page 4 of 10

II. Linked List Class Manipulation (continued)

Select from the possible answers for the 4 questions given on the previous page.

1) Q->Next->Next

2) Q->getNext()->getNext()

3) *x

4) x->getData()

5) x->getData().getValue()

6) setData(y->getData().getValue())

7) setData(y->Data.Value)

8) y->getNext()

9) t

10) t->getNext()

In looking over the code I compiled to check this question, I see that I
mistakenly left in the scope a typedef equating int to ItemType (which I
needed to compile the code for section V.).

Discussion for Page 8 Section IV questions 17-20:

Parameterized construction of Miranda allocates a ‘F’ bool.
Initialization (copy) construction of AJ allocates a ‘F’ bool. Default
construction of Cobb allocates a ‘T’ bool. Parameterized construction of
Hillary allocates a ‘F’ bool. Execution of DustPuppy and pass by value
of Miranda results in a deep copy construction of a local Chief object.
Changes to Chief affect the copy which is deallocated by the destuctor
when DustPuppy terminates. Cobb assigned to Hillary results in a
member-wise shallow assignment (& a memory leak) and pointer
aliases. Setting and negating Hillary’s bool results in Cobb’s also being
set due to the pointer alias.

CS 1704 Intro Data Structures and Software Engineering Test 2
Spring 2002

Form: A Page 5 of 10

III. Separate Compilation

For the next three questions, consider a C++ program composed of three cpp files and three corresponding header files, as
shown below, (the name of the file is in the first comment line of the file). All function calls are shown, as are all type
declarations, function prototypes and some include directives. In the source and header files, there should be only one
physical occurrence of a function prototype, and one physical occurrence of a type declaration. Do not assume that any
preprocessor directives are used but not shown.

// main.h
class mClass {

//. . .
};

// main.cpp
#include "main.h"
__________________ //Line 9
__________________ //Line 10
//. . .
void main() {

Class2 C;
Exam2(C);
//. . .

}//end main

//. . .
// mClass member Functions

// Exam2.h
//. . .
void Exam2(Class2& C2obj);

// Exam2.cpp
#include "Exam2.h"
//. . .
void Exam2(Class2& C2obj) {

//. . .
}

// Class2.h
__________________ //Line 11
//. . .
class Class2 {
private:

mClass MObj;
//. . .

};

// Class2.cpp
#include "Class2.h"
//. . .

// Class2 member Functions

9. If the organization shown above is used, and no preprocessor directives are added, which of the following include

directives should replace the underscores at Line 9 above so that main.cpp can be successfully compiled?

1) Nothing.
2) #include "main.h"
3) #include "Exam2.h "
4) #include "Class2.h"

5) #include "Exam2.cpp"
6) #include "Class2.cpp"
7) None of these.

10. If the organization shown above is used, and no preprocessor directives are added, which of the following include

directives should replace the underscores at Line 10 above so that main.cpp can be successfully compiled?

1) Nothing.
2) #include "main.h"
3) #include "Exam2.h "
4) #include "Class2.h"

5) #include "Exam2.cpp"
6) #include "Class2.cpp"
7) None of these.

11. If the organization shown above is used, and no preprocessor directives are added, which of the following include

directives should replace the underscores at Line 11 above so that Class2.cpp can be successfully compiled?

1) Nothing.
2) #include "main.h"
3) #include "Exam2.h "

4) #include "Class2.h"
5) #include "Exam2.cpp"
6) #include "Class2.cpp"

9: When main.cpp is compiled the
inclusion of Class2 is necessary for
the first declaration in main().

10: The inclusion of Exam2 is
required to provide access to Exam2()
for invocation.

Note: if answers to 9 & 10 are
swapped then compilation of main.cpp
causes an undeclared Class2 error
since its the parameter type in Exam2.

11: Class2 uses the mClass
type which is declared in
main.h

CS 1704 Intro Data Structures and Software Engineering Test 2
Spring 2002

Form: A Page 6 of 10

III. Separate Compilation (continued)

Consider the function call tree:

Assume that the software system is to be decomposed for compilation into three separate source files: main.cpp,
Sid.cpp, and Pitr.cpp, and accompanying header files of the same names. The function definitions are to be placed in
the various cpp files as shown below along with the corresponding code for the files.

FN definition locations Scott separate compilation unit

Definition for: Goes in: //Pitr.h
void Pitr (/* parameters */);

main() main.cpp

Sid() Sid.cpp

Stef() Sid.cpp

Pitr() Pitr.cpp

Erwin() Pitr.cpp

// Pitr.cpp
#include “Pitr.h”
void Erwin(/* parameters */);

void Pitr (/* parameters */){
// Pitr’s code

Erwin();
Stef();

}

void Erwin (/* parameters */){
// Erwin’s code

Erwin(/* parameters */);
}

Sid separate compilation unit main separate compilation unit
//Sid.h
void Sid (/* parameters */);
int greg;

//main.h
/* main declarations */

// Sid.cpp
#include “Sid.h”

void Stef (/* parameters */);

void Sid (/* parameters */){
// Sid’s code

Stef(/* parameters */);
}

void Stef (/* parameters */){
// Stef’s code
}

//main.cpp
#include “main.h”
#include “Sid.h”

void main() {

Sid (/* parameters */);
Pitr (/* parameters */);
Erwin(/* parameters */);

}

main()

Sid()

Erwin ()

Pitr()

Stef()

CS 1704 Intro Data Structures and Software Engineering Test 2
Spring 2002

Form: A Page 7 of 10

III. Separate Compilation (continued)

Assume that there are no global type and no global constant declarations, (and also no global variables of course). Answer
the following questions with respect to the above compilation organization and the goals of achieving information hiding and
restricted scope:

12. Assuming the partial code above was completed and contained no syntax errors, if only “Pitr.cpp” is compiled

(not built) within Microsoft Visual C++, which of the following type of errors would occur:

1) Compilation error C2065: Erwin : undeclared identifier
2) Compilation error C2065: Stef : undeclared identifier
3) Compilation error C2001: missing main function.
4) No errors would be generated.

13. Which of the following prototypes should be moved from its unit source.cpp file to the unit header.h file?

1) void Sid (/* parameters */); 3) void Erwin (/* parameters */);
Since Erwin() is called by main() which is in another .cpp file.

2) void Pitr(/* parameters */); 4) void main ();

14. In addition to the include directives listed above, where else should “Pitr.h” be included?

(1) main.h (3) Sid.h (5) Pitr.h
(2) main.cpp (4) Sid.cpp (6) nowhere else

15. In addition to the include directives listed above, where else should “Sid.h” be included?

(1) main.h (3) Pitr.cpp (5) nowhere else
(2) Pitr.h (4) Sid.h

16. Assume all the code above was completed and contains no syntax or compilation errors. Further, assume that all of

the header files have appropriate conditional compilation directives surrounding their contents. When the project
containing the files is built within Microsoft Visual C++, which of the following linker errors would occur:

1) error LNK2015: multiple definitions for identifier ‘Stef’
2) error LNK2015: multiple definitions for identifier ‘Erwin’
3) Pitr.obj : error LNK2005: "int greg" already defined in Sid.obj
4) No errors would be generated.

12: When Pitr.cpp is compiled
the call to Stef(), [shown on the
call tree], requires that the
prototype for Stef be in the
same scope.

✗

14: main() contains a call to Erwin()
so the header for the file containing it
needs to be included..

15: Pitr() contains a call to Stef() so
the header for the file containing it
needs to be included..

16: I decided to omit this question, (which is why I set any response to be
treated as correct). I mistakenly left in the line that you were to assume no
global variables, when in fact greg in Sid.h is a global variable which
would cause a classic linking error.

CS 1704 Intro Data Structures and Software Engineering Test 2
Spring 2002

Form: A Page 8 of 10

IV. Object Manipulations

Assume the following class declaration and implementation:

class IlliadUF {
private:

bool* unix;
public:

IlliadUF();
IlliadUF(bool LordCrud);
IlliadUF(const IlliadUF& Mike);
bool getTF() const;
void setTF(bool truth);
~IlliadUF();

};

IlliadUF::IlliadUF () {
unix = new bool(true);

}

IlliadUF::IlliadUF (bool LordCrud) {
unix = new bool(LordCrud);

}

bool IlliadUF::getTF() const {
return(*unix);

}

void IlliadUF::setTF(bool truth) {
*unix = truth;

}

IlliadUF::IlliadUF
(const IlliadUF& Mike) {

unix = new bool(*Mike.unix);
}

IlliadUF::~IlliadUF () {
delete unix;

}

 Given the following code:

void DustPuppy(IlliadUF Chief);

void main() {
IlliadUF Miranda(false), AJ = Miranda;
IlliadUF Cobb, Hillary(true);

DustPuppy(Miranda);
Cobb = Hillary;
Hillary.setTF(!Hillary.getTF());

cout << boolalpha; //stream modifier to output true/false for bools
cout << "Contents of Miranda is:" << Miranda.getTF() << endl; //LINE 1
cout << "Contents of AJ is:" << AJ.getTF() << endl; //LINE 2
cout << "Contents of Cobb is:" << Cobb.getTF() << endl; //LINE 3
cout << "Contents of Hillary is:" << Hillary.getTF() << endl; //LINE 4

}

void DustPuppy(IlliadUF Chief) { Chief.setTF(!Chief.getTF()); }

For the next 4 questions, select your answers from the following:

1) true
2) false

3) Execution Error
4) None of these

17. What bool value is output by the call Miranda.getTF() in LINE 1 above? 2) false

18. What bool value is output by the call AJ.getTF() in LINE 2 above? 2) false

19. What bool value is output by the call Cobb.getTF() in LINE 3 above? 2) false

20. What bool value is output by the call Hillary.getTF() in LINE 4 above? 2) false

T
F

Hillary

F

T

Miranda

Cobb
memory

leak
F

AJ

See page 4 for problem discussion.

CS 1704 Intro Data Structures and Software Engineering Test 2
Spring 2002

Form: A Page 9 of 10

21. In the above code, immediately before main() goes out of scope, what is the total number of IlliadUF objects

that has been dynamically allocated, (include in the count any that have been allocated and destructed).

(1) 1 (3) 3 (5) 5 (7) 7 (9) 0
(2) 2 (4) 4 (6) 6 (8) 8 (10) None of the above

V. Recursion

Assume that the LinkNode and LinkList classes discussed in class have been implemented correctly and are available for
use. The LinkList and LinkNode interfaces are given below:

#include "LinkNode.h" // for node declaration
#include "Item.h"
class LinkList {
private:

LinkNode* Head; // points to head node in list
LinkNode* Tail; // points to tail node in list
LinkNode* Curr; // points to "current" node

public:
LinkList(); //constructor
LinkList::LinkList(const LinkList& Source);
LinkList& LinkList::operator=

(const LinkList& otherList);
~LinkList();//destructor
bool isEmpty() const;
bool inList() const;
bool PrefixNode(const Item& newData);
bool Insert(const Item& newData);
bool Advance();
void gotoHead();
void gotoTail();
bool DeleteCurrentNode();
bool DeleteValue(const Item& Target);
Item getCurrentData() const;
void setCurrentData(const Item& newData);

};

Assume that the Item type has been typedef’d to be equivalent to an int and that each node of the list holds one digit of an
integer number. If the list stores a date then we might wish to code a recursive function to determine if the date is a
palindrome. A palindrome is something that is the same forwards as backwards. For example, the date 10 02 2001 would be
a palindromic date, (Europeans list the day first, so for them 20 02 2002 would be a palindromic date).

Given the following, incomplete, palidrome list class member functions:

bool LinkList::ListPalindrome() {
//setup function for Palindrome which does the real work
if (! isEmpty()) {

gotoHead();
bool palin = Palindrome();
for (; (Tail->getNext() != NULL); Tail = Tail->getNext()) ;
return (palin);

} else
return (false);

//LinkNode.h
#include "Item.h"
class LinkNode {
private:

Item Data; //data "capsule"
LinkNode* Next; //pointer next

node
public:

LinkNode();
LinkNode(const Item& newData);
void setData(const Item& newData);
void setNext(LinkNode* const

newNext);
Item getData() const;
LinkNode* getNext() const;

};

The 4 objects in main() and the copy of Chief() in

CS 1704 Intro Data Structures and Software Engineering Test 2
Spring 2002

Form: A Page 10 of 10

} // ListPalindrome

bool LinkList::Palindrome() {
LinkNode* tmp;
if (________________) //22.

return true;
if (_______________) //23.

return (false);
Advance();
for (tmp = Curr; tmp->getNext() != Tail; tmp = tmp->getNext()) ;//null for
____________________; //24.
return(Palindrome()) ;

} // Palindrome

22. Select from the missing statements below to correctly fill in the blank for line numbered //22. in the above code to

correctly satisfy the first base case of the Palindrome function?

1) Head == NULL
2) Head == Tail
3) Curr == NULL

4) Curr == Head
5) Curr == Tail
6) None of the above

23. Select from the missing statements below to correctly fill in the blank for line numbered //23. in the above code to

correctly satisfy the second base case of the Palindrome function?

1) Head->getData() == Tail->getData()
2) Head->getData() != Tail->getData()
3) getCurrentData() == Tail->getData()
4) getCurrentData() != Tail->getData()

24. Select from the missing statements below to correctly fill in the blank for line numbered //24. in the above code to

correctly setup the recursive call to the Palindrome function?

1) Head = tmp
2) Curr = tmp
3) Tail = tmp

4) Head = Curr
5) Tail == Curr
6) None of the above

25. Which of the recursive problem solution methods is the Palindrome() function an example?

1) Tail (going up) recursion
2) Head (going down) recursion
3) Middle Decomposition

4) Edges & Center Decomposition
5) Backtracking
6) None of the above

Curr starts at the beginning of the list and tail at the end.
Elements are compared and if matched Curr advances
forward and tail is moved backward.

If Curr and Tail are ever pointing to
the same node then it is the only one
remaining and thus list is a palindrome
since this single element equals itself.

If the nodes that Curr and Tail are
pointing to do not contain equal items
then the list cannot be a palindrome.

tmp traverses the list until it points to
the node that precedes the tail pointer,
which is used to move tail backwards
through the list.

