
CS 1704 Project 1 Summer II 2001

Due: Monday, July 23 Page 1 of 6

INV1: Inventory Management System 1

Fundamental Concepts: data class, dynamic array of objects

The point of this assignment is to give you beginning programming experience with programmer-defined classes and
dynamic memory. This project will require you to apply what you have learned about classes and dynamic memory in CS
1704. This assignment will modify and extend INV0. All of the specified functionality of INV0 will be retained. In order
to make the program more useful, other action commands will be implemented. The data structure that holds the in-memory
inventory database will also be changed; see the section on Dynamic Array Management below for details. INV1 will first
load the initial inventory data file as before, creating a dynamic in-memory inventory database array, sort by SKU, and then
read and process actions from the Actions.txt script file. As with INV0, when all the specified actions have been
processed, INV1 will exit.

File Descriptions:

The initial inventory data file and the script actions file will have precisely the same syntax as per INV0, aside from some
new actions.

Each line of the actions file will contain one of the commands described in the INV0 specification, or one of the new
commands described below. As before, commands are case-sensitive and take a fixed number of tab-delimited arguments.
The command names will be valid, and each command will include the correct number of arguments.

find <SKU>

This command results in a search being performed to locate the inventory object with the corresponding SKU number. If
located, the command will display the <index> of the object in the array followed by the <Item> member field of
the object. The command output must be in the following format made to the output file, dbase.txt:

Find: <index> <Item>

If a corresponding SKU object cannot be located, the output of the command must be the following, where <SKU> is
replaced by the SKU number that was to be found:

Find: <SKU> ***MISSING***

stock <SKU>

This command also results in a search being performed to locate the inventory object with the corresponding SKU
number. If located the command will display the sum of the <floor> and <ware> stock member fields of the object.
The command output must be in the following format made to the output file, dbase.txt:

Stock: <SKU> total stock

If a corresponding SKU object cannot be located the output of the command must be the following, where <SKU> is
replaced by the SKU number that was to be found:

Stock: <SKU> ***MISSING***

As previously, for both input files, a newline character will terminate each input line, including the last. You may assume
that all of the input values will be syntactically correct, and that they will be given in the specified order.

Updated sample input files for INV1 will be posted on the course web site soon. When they are available, an announcement
will be posted.

CS 1704 Project 1 Summer II 2001

Due: Monday, July 23 Page 2 of 6

Simple Inventory Class & Objects

You are required to change your inventory struct type into a simple data class type. This will require the creation of
constructor, reporter (get), mutator (set) and summation member function(s). Under no circumstances is the class to
contain any dynamic memory allocation. The inventory class will be the only allowed programmer-defined class in
the program. Since the class will be a simple data class, containing no dynamic memory, no destructor will be
required. In addition, no overloading of the assignment operator will be required. Member functions should be
documented the same as non-member functions. See the course notes for a description of how the class member
functions are to be depicted on the structure chart design.

Dynamic Array Management

You are required to use a dynamically-allocated array of inventory class objects. The dynamic array of inventory objects
must not be implemented as a class itself. To make the program memory resource efficient, the dynamically allocated array
must be dynamically resized during execution as the number of inventory records to be stored grows and shrinks.
You will initially allocate an array capable of holding exactly 5 inventory record objects. If the list outgrows the current
array size, you will dynamically enlarge the array to hold exactly 5 additional inventory record objects. If the number of
unused array locations grows to 10, you will dynamically shrink the array to hold 5 fewer records (allowing some slack
space for future growth). Unlike before, if the script actions file contained add commands that would overflow the array
capability the commands were ignored. However such a situation will now cause the array to dynamically re-size itself and
grow.

This crudely mimics the behavior of a C++ vector object. You are specifically forbidden to use any C++ vector objects or
any other any STL templates in this program, or to use a linked list of any type in place of the specified array! Violating
that restriction would remove one of the major points of this assignment and will certainly result in a major deduction.

Input File Samples:

Initial Inventory File

The format of this file is unchanged from INV0. A sample Inventory.txt input file is shown below.

SKU Item Retail Cost Floor Ware
--Price----Price---Stock---Stock
V0011 Cut Green Bean 14.5 oz 1.05 0.49 73 227
V0013 Cut Green Beans 14.5 oz 0.75 0.51 68 332
V0017 Lima Beans 15 oz 0.97 0.49 92 108
V0024 Cut Wax Beans 14.5 oz 0.69 0.34 47 53
V0043 Chili Hot Beans 15 oz 0.65 0.29 36 64
F0001 Braeburn apples, 2 pack 1.79 0.89 16 14
F0002 Braeburn apples, 6 pack 4.49 2.12 33 27
F0003 Gala apples, 2 pack 1.89 0.75 26 24
F0004 Gala apples, 6 pack 4.49 1.99 20 25
F0005 Bananas, green 16 oz 0.69 0.25 78 112
F0006 Lite Peaches 15 oz 1.09 0.49 44 134
F0007 Bananas, ripe 16 oz 0.69 0.20 166 234
F0008 Strawberries 16 oz 1.49 0.69 72 118
F0009 Blackberries, vine ripened 1/2 pt 4.49 1.99 53 136
F0010 Blueberries, vine ripened 1/2 pt 5.99 2.49 32 68
F0011 Grapefruit, large pink 0.79 0.29 88 212

CS 1704 Project 1 Summer II 2001

Due: Monday, July 23 Page 3 of 6

Database Actions File

There is no guaranteed limit on the number of actions. The changes to this file have been discussed previously, (see the File
Descriptions section above). A small sample Actions.txt input file is shown below.

sort SKU
del V0010
add V0011 Cut Green Bean 14.5 oz 1.05 0.49 73 227
del F0011
del V0011
add V0031 Great Northern Bean 14.5 oz 1.25 0.59 86 324
del V0031
add V0031 Great Northern Bean 12.5 oz 1.25 0.59 86 324
sort Item
add V0033 Red Kidney Bean 12.5 oz 1.29 0.55 82 320
add V0007 Whole Green Bean 14.5 oz 0.75 0.45 177 123
add F0023 Avocado 2.29 1.09 24 23
del F0023
add F0023 Avocado 2.24 1.09 23 23
sort SKU
find V0011
find F0011
find V0043
find F0010
stock F0023
stock V0010
stock V0031
dump

Output description and sample:

Your program must write its output data to a file named dbase.txt — use of any other output file name will result in a
runtime testing score of zero. Here is the output file corresponding to the given sample input files:

Programmer: Dwight Barnette
Grocery Inventory Management System

Find: V0011 ***MISSING***
Find: F0011 ***MISSING***
Find: 17 Chili Hot Beans 15 oz
Find: 9 Blueberries, vine ripened 1/2 pt
Stock: F0023 46
Stock: V0010 ***MISSING***
Stock: V0031 410

Inv SKU Item Retail Cost Floor Warehouse
0. F0001 Braeburn apples, 2 pack 1.79 0.89 16 14
1. F0002 Braeburn apples, 6 pack 4.49 2.12 33 27
2. F0003 Gala apples, 2 pack 1.89 0.75 26 24
3. F0004 Gala apples, 6 pack 4.49 1.99 20 25
4. F0005 Bananas, green 16 oz 0.69 0.25 78 112
5. F0006 Lite Peaches 15 oz 1.09 0.49 44 134
6. F0007 Bananas, ripe 16 oz 0.69 0.20 166 234
7. F0008 Strawberries 16 oz 1.49 0.69 72 118
8. F0009 Blackberries, vine ripened 1/2 pt 4.49 1.99 53 136
9. F0010 Blueberries, vine ripened 1/2 pt 5.99 2.49 32 68
10. F0023 Avocado 2.24 1.09 23 23
11. V0007 Whole Green Bean 14.5 oz 0.75 0.45 177 123
12. V0013 Cut Green Beans 14.5 oz 0.75 0.51 68 332
13. V0017 Lima Beans 15 oz 0.97 0.49 92 108
14. V0024 Cut Wax Beans 14.5 oz 0.69 0.34 47 53
15. V0031 Great Northern Bean 12.5 oz 1.25 0.59 86 324
16. V0033 Red Kidney Bean 12.5 oz 1.29 0.55 82 320
17. V0043 Chili Hot Beans 15 oz 0.65 0.29 36 64
20> MAX INVENTORY STORAGE

The first line of your output must include your name only. The second line must include the title “Grocery Inventory
Management System” only. The third line must be a line of underscore characters. The first three lines (programmer,
program title and underscore lines) are not to be repeated.

CS 1704 Project 1 Summer II 2001

Due: Monday, July 23 Page 4 of 6

The dump command will be modified slightly. Each inventory record output will be numbered starting at zero. At the end of
the inventory record table listing, the current size of the dynamic array will be output. Note that this is not the same as the
number of objects stored in the array. Note well that the Actions.txt file is not required to end in a dump or save
command and multiple dump commands may exist in the file. The first and last line of each dump must be a line of
underscores. The second dump line must display the column labels shown above. The third dump line will contain the
inventory data echoed from the current database, aligned under the appropriate headers. The column field headings should
be repeated for each display listing resulting from a dump.

You are not required to use the exact horizontal spacing shown in the example above, but your output must satisfy the
following requirements:

! You must use the specified header and column labels, and print a row of underscore delimiters before and after
the table body, as shown.

! You must arrange your output in neatly aligned columns. Use spaces, not tabs to align your output.
! You must use the same ordering of the columns as shown here.

Programming Standards:

You'll be expected to observe good programming/documentation standards. All the discussions in class, in the course notes
and on the course Web site about formatting, structure, and commenting your code should be followed. Some specifics:

Documentation:
! You must include the honor pledge in your program header comment, (see below).
! You must include a header comment that describes what your program does and specifying any constraints or

assumptions of which a user should be aware, (such as preset file names, value ranges, etc.).
! You must include a comment explaining the purpose of every variable or named constant you use in your program.
! You must use meaningful identifier names suggesting the meaning/purpose of the constant, variable, function, etc.
! Precede every major block of your code with a comment explaining its purpose.
! Precede every function you write with a header comment. This should explain in one sentence what the function

does, then describe the logical purpose of each parameter (if any), describe the return value (if any), and state
reasonable pre- and post-conditions and invariants.

! Use the assert function to check for error conditions and verify function pre- and post-conditions whenever
possible.

! You must use indentation and blank lines to make control structures like loops and if-else statements more
readable.

You are also required to conform to the coding requirements specified below.

Coding:
! Implement your solution in a single source file, with no user-defined header files. (This restriction is for ease of

testing and evaluation.)
! Use named constants instead of variables where appropriate.
! Use an array of objects to store the inventory data.
! Use C++ string objects, not C-style char arrays to store character strings, (aside from string literals).
! Declare and make appropriate use of an enumerated type in your program.
! You must make good use of user-defined functions in your design and implementation. To encourage this, the

body of main() must contain no more than 20 executable statements and the bodies of the other functions you
write must each contain no more than 40 executable statements. An executable statement is any statement other
than a constant or variable declaration, function prototype or comment. Blank lines do not count.

! The definition of main() must be the first function definition in your source file. You may use file-scoped
function prototypes and you may use file-scoped constants. You may also make the class declaration
statement for your inventory class type file-scoped (in fact you must do this).

! You may not use file-scoped variables of any kind.

CS 1704 Project 1 Summer II 2001

Due: Monday, July 23 Page 5 of 6

! Function parameters should be passed appropriately. Use pass-by-reference only when the called function needs to
modify the parameter. Pass array parameters by constant reference (using const) when pass-by-reference is not
needed. Pointers should be passed by reference, const pointer and/or const target as appropriate.

Interim Design:
You will produce an interim design for INV1, and represent that design in a modular structure chart. The structure chart
must indicate your design plans for INV1. It is expected that your final design will differ from the interim design.
Nevertheless, your interim design should be relatively complete. If the interim design is incomplete or if the differences
between your interim design and your final code are excessive, you will be penalized. That means that you should take the
production of the interim design seriously, but not that you should avoid changes that would improve your final
implementation of INV1. You must submit this interim design, to the Curator System, no later than midnight Monday, July
16, (i.e. prior to July 17). Submit a MS Word.doc file. Do NOT compress, (zip), the interim design submission!

Testing:
Obviously, you should be certain that your program produces the output given above when you use the given input files.
However, verifying that your program produces correct results on a single test case does not constitute a satisfactory testing
regimen.

At minimum, you should test your program on all the posted input/output examples. You could make up and try additional
input files as well; of course, you'll have to determine by hand what the correct output would be.

Submitting your solution:
You will submit your source code electronically, as described here. INV1 will be subjected to runtime testing by the
Curator automated grading system. You will be allowed to make up to five submissions of INV1 to the Curator.

Instructions for submitting your program are available in the Student Guide at the Curator Homepage:
http://ei.cs.vt.edu/~eags/Curator.html

Read the instructions carefully.

Note well: your submission that receives the highest score will be graded for adherence to these requirements, whether it is
your last submission or not. There will be absolutely no exceptions to this policy! If two or more of your submissions are
tied for highest, the earliest of those will be graded and also evaluated by the TAs who will assess a deduction for adherence
to the specified programming standards. The deduction will be applied to your highest score from the Curator. Therefore:
implement and comment your C++ source code with these requirements in mind from the beginning rather than planning to
clean up and add comments later.

http://ei.cs.vt.edu/~eags/Curator.html

CS 1704 Project 1 Summer II 2001

Due: Monday, July 23 Page 6 of 6

Pledge:
Each of your project submissions to the Curator must be pledged to conform to the Honor Code requirements for this
course. Specifically, you must include the following pledge statement in the header comment for your program:

// On my honor:
//
// - I have not discussed the C++ language code in my program with
// anyone other than my instructor or the teaching assistants
// assigned to this course.
//
// - I have not used C++ language code obtained from another student,
// or any other unauthorized source, either modified or unmodified.
//
// - If any C++ language code or documentation used in my program
// was obtained from another source, such as a text book or course
// notes, that has been clearly noted with a proper citation in
// the comments of my program.
//
// - I have not designed this program in such a way as to defeat or
// interfere with the normal operation of the Curator Server.

Failure to include this pledge in a submission is a violation of the Honor Code.

	Initial Inventory File

