
CS 1704 Project 0 Summer II 2001

Due: Tuesday, July 10 Page 1 of 6

Fundamental Concepts: array of structures, string objects, searching and sorting

The point of this assignment is to validate your understanding of the basic concepts presented in CS 1044. If you have
trouble implementing the following specification correctly, that may be good evidence that either you will have difficulty in
this course or that you are not ready to attempt CS 1704. Feel free to consult the online notes for CS 1044 as a reference.
Follow the given specification exactly — this assignment will be scored using an automated grading system and deviations
will generally be penalized heavily.

INV0: Grocery Inventory Management System

This program is an extension of the last program in CS 1044, Summer I, 2001. The INV0 program will read an input file
that will specify grocery inventory information (see file description below). The inventory data file will begin with two
header lines that should be ignored. The remainder of the file will consist of lines of data that conform to the following
format specification:

<SKU><tab><description><tab><spaces><retail unit
price><tab><cost unit price><tab><floor
stock><tab><warehouse stock><newline>

The number of data lines is unknown (although it will never exceed 100), so your program must read until input failure at
the end of the file. A sample inventory data file is given later in this specification. You must define an appropriate structured
type to store all the information about each inventory item.

The program will first read and store the inventory data, in an in-memory database structure, and then process a second
input file specifying actions to take on the inventory data. Supported actions include adding an inventory record to the
database, deleting an inventory record from the database, sorting the database on various fields (keys), and dumping a
display of the database to file. When all the specified actions have been processed, the program will exit.

Some advice on handling monetary amounts:
The prices are positive decimal values which you are advised to store these monetary amounts as integers, not as doubles.
To achieve precisely correct answers, you should read the dollar amount and the cents amount separately and then store the
total price in cents. All internal calculations involving money should operate on cents and produce results that are stored as
integers. When the time comes to print a monetary amount, you should compute the correct dollar amount and cents
amount, as integers, and print those separated by a decimal point. If you do not do this, some of your answers may differ
from the correct results in the last digit.

struct variables:
Your design and implementation must treat an inventory item as a "thing", not just as a bunch of separate variables. That
means you must design and use a struct type. You should have an "item" type that aggregates the components of an
item. Your declarations of the struct types should be global. Remember that you're declaring a type, not a variable here.
Since these types will be used throughout the entire program, including in function parameter lists, the type declarations
must be global.

Input file descriptions and samples:

This program requires the use of two input files. The first file contains the grocery inventory data and will be named
Inventory.txt. The second file contains a list of actions to be performed on the inventory record database, and will be
named Actions.txt. Note that, due to the automated testing process, use of incorrect input file names will result in a
score of zero.

CS 1704 Project 0 Summer II 2001

Due: Tuesday, July 10 Page 2 of 6

A newline character will terminate each input line, including the last. You may assume
that all of the input values will be syntactically correct, and that they will be given in
the specified order.

Initial Grocery Inventory File

The first line of the inventory input file is a label line that specifies column labels. The
second line is a delimiter line of dashes. On each of the remaining lines will be six data
fields, separated by tab characters. The order of the data fields on the line and the type of value in the field are given in the
table at the right.

A sample Inventory.txt input file is shown below.

SKU Item Retail Cost Floor Ware
--Price----Price---Stock---Stock
V0011 Cut Green Bean 14.5 oz 1.05 0.49 73 227
V0013 Cut Green Beans 14.5 oz 0.75 0.51 68 332
V0017 Lima Beans 15 oz 0.97 0.49 92 108
V0024 Cut Wax Beans 14.5 oz 0.69 0.34 47 53
V0043 Chili Hot Beans 15 oz 0.65 0.29 36 64
F0001 Braeburn apples, 2 pack 1.79 0.89 16 14
F0002 Braeburn apples, 6 pack 4.49 2.12 33 27
F0003 Gala apples, 2 pack 1.89 0.75 26 24
F0004 Gala apples, 6 pack 4.49 1.99 20 25
F0005 Bananas, green 16 oz 0.69 0.25 78 112
F0006 Lite Peaches 15 oz 1.09 0.49 44 134
F0007 Bananas, ripe 16 oz 0.69 0.20 166 234
F0008 Strawberries 16 oz 1.49 0.69 72 118
F0009 Blackberries, vine ripened 1/2 pt 4.49 1.99 53 136
F0010 Blueberries, vine ripened 1/2 pt 5.99 2.49 32 68
F0011 Grapefruit, large pink 0.79 0.29 88 212

There will never be two different inventory records with the same SKU, (Stock Keeping Unit), number in the database at the
same time. Each of the other fields may be duplicated within the database. There will be no more than 100 items in the
grocery inventory database at any time.

You are required to use a statically-allocated array of structures to store the inventory information. Use of pointers,
classes, STL templates and/or dynamic memory allocation is expressly forbidden in this assignment.

Note that the alignment of the inventory information in the initial file may not be perfect, because the combination of tabs
may not align the numbers/fields correctly. This is a good example of why it is suggested that you use spaces (not tabs) to
align your output. Here, the tab character is used for input separation because it makes it somewhat easier to parse the item
descriptions. The SKU will always be five characters long. Descriptions will be no more than 40 characters long. The
prices will be monetary decimal values. The prices are guaranteed to be positive, and the stock values are guaranteed to be
non-negative so you don't need to check these for errors.

Inventory
Data Fields

Contents

SKU character string
Description character string
Retail decimal
Cost decimal
Floor integer
Warehouse integer

CS 1704 Project 0 Summer II 2001

Due: Tuesday, July 10 Page 3 of 6

Database Actions File

Each line of the actions file will contain one of the commands described below. Commands are case-sensitive and take a
fixed number of arguments. The command names will be valid and each command will include the correct number of
arguments. Command arguments will be tab-delimited.

add <SKU><tab><description><tab><spaces><retail unit price><tab><cost unit
price><tab><floor stock><tab><warehouse stock><newline>

This causes the insertion of a new inventory record into the database list. Insertion should place the new
record in the proper location with respect to the current sort ordering of the list. The initial inventory list will be
given in arbitrary order, and you must initially sort it by the SKU number before further processing. If an
add instruction specifies the <SKU> number of an item that’s already in the list, the list will not be
modified. Note that due to page limitations, (not file line size), some of the arguments of the add command
description above have wrapped onto the next line. In the actual Actions.txt input file they will all be
tab separated on the same line. Note: appending the new record to the end of the array and re-sorting is not
an insertion operation and will be penalized. If the number of inventory records stored is at the maximum,
100, and an add operation is encountered then the list must not be modified and the add operation will be
skipped and never processed.

del <SKU>

This causes the deletion of the inventory record for the indicated <SKU> number from the database list. If a
del instruction specifies the number of an item that’s not in the list, the list will not be modified.

sort <FieldSpecifier>

This causes the inventory list to be sorted into ascending order by the specified field. The FieldSpecifier
must be one of: SKU, or Item. If a sort instruction specifies an invalid FieldSpecifier, the list will not
be modified. You must use the selection sort algorithm, ordering the alphabetically by their description
when an Item FieldSpecifier is indicated.

dump

This causes the inventory information to be printed to an output file named dbase.txt. Printing should
be in the physical order of the list resulting from the last sort. More than one dump command may exist in
the actions file in which case the inventory listings for each dump command must be appended to the last
listing.

There is no limit on the number of actions. A small sample Actions.txt input file is shown below. Note that due to page
limitations, (not file line size). In the actual Actions.txt input file they will all be tab separated on the same line.

sort SKU
del V0010
add V0011 Cut Green Bean 14.5 oz 1.05 0.49 73 227
del F0011
del V0011
add V0031 Great Northern Bean 14.5 oz 1.25 0.59 86 324
del V0031
add V0031 Great Northern Bean 12.5 oz 1.25 0.59 86 324
sort Item
add V0033 Red Kidney Bean 12.5 oz 1.29 0.55 82 320
add V0007 Whole Green Bean 14.5 oz 0.75 0.45 177 123
add F0023 Avocado 2.29 1.09 24 23
del F0023
add F0023 Avocado 2.24 1.09 23 23
sort SKU
dump

CS 1704 Project 0 Summer II 2001

Due: Tuesday, July 10 Page 4 of 6

Output description and sample:

Your program must write its output data to a file named dbase.txt — use of any other output file name will result in a
runtime testing score of zero. Here is an output file corresponding to the given sample input files:

Programmer: Dwight Barnette
Grocery Inventory Management System

SKU Item Retail Cost Floor Warehouse
F0001 Braeburn apples, 2 pack 1.79 0.89 16 14
F0002 Braeburn apples, 6 pack 4.49 2.12 33 27
F0003 Gala apples, 2 pack 1.89 0.75 26 24
F0004 Gala apples, 6 pack 4.49 1.99 20 25
F0005 Bananas, green 16 oz 0.69 0.25 78 112
F0006 Lite Peaches 15 oz 1.09 0.49 44 134
F0007 Bananas, ripe 16 oz 0.69 0.20 166 234
F0008 Strawberries 16 oz 1.49 0.69 72 118
F0009 Blackberries, vine ripened 1/2 pt 4.49 1.99 53 136
F0010 Blueberries, vine ripened 1/2 pt 5.99 2.49 32 68
F0023 Avocado 2.24 1.09 23 23
V0007 Whole Green Bean 14.5 oz 0.75 0.45 177 123
V0013 Cut Green Beans 14.5 oz 0.75 0.51 68 332
V0017 Lima Beans 15 oz 0.97 0.49 92 108
V0024 Cut Wax Beans 14.5 oz 0.69 0.34 47 53
V0031 Great Northern Bean 12.5 oz 1.25 0.59 86 324
V0033 Red Kidney Bean 12.5 oz 1.29 0.55 82 320
V0043 Chili Hot Beans 15 oz 0.65 0.29 36 64

The first line of your output must include your name only. The second line must include the title “Grocery Inventory
Management System” only. The third line must be a line of underscore characters; the fourth line must display the
column labels shown above. The fifth line will contain the inventory data echoed from the current database, aligned under
the appropriate headers. The last line of each dump must be a line of underscore characters. The column field headings
should be repeated for each display listing resulting from a dump. However, the first three lines (programmer, program title
and underscore lines) are not to be repeated.

You are not required to use the exact horizontal spacing shown in the example above, but your output must satisfy the
following requirements:

! You must use the specified header and column labels, and print a row of underscore delimiters before and after
the table body, as shown.

! You must arrange your output in neatly aligned columns. Use spaces, not tabs to align your output.
! You must use the same ordering of the columns as shown here, and print the Price fields to two decimal

places.

Programming Standards:

You'll be expected to observe good programming/documentation standards. All the discussions in class, in the course notes
and on the course Web site about formatting, structure, and commenting your code should be followed. Some specifics:

Documentation:
! You must include the honor pledge in your program header comment, (see below).
! You must include a header comment that describes what your program does and specifying any constraints or

assumptions of which a user should be aware, (such as preset file names, value ranges, etc.).
! You must include a comment explaining the purpose of every variable or named constant you use in your program.
! You must use meaningful identifier names suggesting the meaning/purpose of the constant, variable, function, etc.
! Precede every major block of your code with a comment explaining its purpose.

CS 1704 Project 0 Summer II 2001

Due: Tuesday, July 10 Page 5 of 6

! Precede every function you write with a header comment. This should explain in one sentence what the function
does, then describe the logical purpose of each parameter (if any), describe the return value (if any), and state
reasonable pre- and post-conditions and invariants.

! Use the assert function to check for error conditions and verify function pre- and post-conditions whenever
possible.

! You must use indentation and blank lines to make control structures like loops and if-else statements more
readable.

You are also required to conform to the coding requirements specified below.

Coding:
! Implement your solution without any user-defined classes.
! Implement your solution in a single source file, with no user-defined header files. (This restriction is for ease of

testing and evaluation.)
! Use named constants instead of variables where appropriate.
! Use integer variables for all monetary values.
! Use an array of structure variables to store the inventory data.
! Use C++ string objects, not C-style char arrays to store character strings, (aside from string literals).
! Declare and make appropriate use of enumerated type(s) in your program.
! You must make good use of user-defined functions in your design and implementation. To encourage this, the

body of main() must contain no more than 20 executable statements and the bodies of the other functions you
write must each contain no more than 40 executable statements. An executable statement is any statement other
than a constant or variable declaration, function prototype or comment. Blank lines do not count.

! You must write at least ten functions, besides main().
! The definition of main() must be the first function definition in your source file. You may use file-scoped

function prototypes and you may use file-scoped constants.
! You may not use file-scoped variables of any kind, (file-scoped types are allowed).
! Function parameters should be passed appropriately. Use pass-by-reference only when the called function needs to

modify the parameter. Pass array parameters by constant reference (using const) when pass-by-reference is not
needed.

Design:
An initial structure chart design of the program is NOT required. However, students may wish to go ahead and produce a
structure chart design as all other projects will require structure chart designs and will build off of this project. If a design is
produced it is not to be submitted in any manner for evaluation or documentation.

Testing:
Obviously, you should be certain that your program produces the output given above when you use the given input files.
However, verifying that your program produces correct results on a single test case does not constitute a satisfactory testing
regimen.

At minimum, you should test your program on all the posted input/output examples. The same program that will be used to
test your solution generated those input/output examples. You could make up and try additional input files as well; of
course, you'll have to determine by hand what the correct output would be.

Submitting your solution:
You will submit your source code electronically, as described here. INV0 will be subjected to runtime testing by the
Curator automated grading system. You will be allowed to make up to five submissions of INV0 to the Curator.

Instructions for submitting your program are available in the Student Guide at the Curator Homepage:
http://ei.cs.vt.edu/~eags/Curator.html

http://ei.cs.vt.edu/~eags/Curator.html

CS 1704 Project 0 Summer II 2001

Due: Tuesday, July 10 Page 6 of 6

Read the instructions carefully.

Note well: your submission that receives the highest score will be graded for adherence to these requirements, whether it is
your last submission or not. There will be absolutely no exceptions to this policy! If two or more of your submissions are
tied for highest, the earliest of those will be graded and also evaluated by the TAs who will assess a deduction for adherence
to the specified programming standards. The deduction will be applied to your highest score from the Curator. Therefore:
implement and comment your C++ source code with these requirements in mind from the beginning rather than planning to
clean up and add comments later.

Pledge:
Each of your project submissions to the Curator must be pledged to conform to the Honor Code requirements for this
course. Specifically, you must include the following pledge statement in the header comment for your program:

// On my honor:
//
// - I have not discussed the C++ language code in my program with
// anyone other than my instructor or the teaching assistants
// assigned to this course.
//
// - I have not used C++ language code obtained from another student,
// or any other unauthorized source, either modified or unmodified.
//
// - If any C++ language code or documentation used in my program
// was obtained from another source, such as a text book or course
// notes, that has been clearly noted with a proper citation in
// the comments of my program.
//
// - I have not designed this program in such a way as to defeat or
// interfere with the normal operation of the Curator Server.

Failure to include this pledge in a submission is a violation of the Honor Code.

	Initial Grocery Inventory File

