
CS 1704 Project 3 Spring 2001

Due: midnight on Monday, April 23 Page 1 of 4

LCIS: Linked Census Information System

This assignment will modify and extend DCIS. All of the previous functionality of SCIS, CCIS and DCIS will be retained,
unless explicitly removed or modified in this specification. There are two major extensions.

First, the CIS area data structure will be changed. LCIS will use a double linked-list of dynamically allocated nodes to
store multiple CIS area objects. In order to receive full credit, the list must be fully encapsulated using a C++ class, and the
list nodes must themselves be implemented using a node class.

Second, in order to make the program slightly more useful, you will add a histogram command. This will create a horizontal
histogram of the area populations currently stored in the list (see input/output file descriptions below). In addition, the
program will provide the capability of ordering the list on different fields. This will require changes to the input and output
specifications and the addition of one new action and the inclusion of one old action:

histogram

and

sort <FieldSpecifier>

LCIS will process command-line arguments in almost the same way as DCIS.

LCIS <InitialCISAreaDataFileName>

or

LCIS <DatabaseFileName> <DatabaseActionsFileName>

The change being that if only one command-line argument <InitialCISAreaDataFileName> is present it will
represent a initial CIS area data file that will be input and automatically saved as correspondingly named
<InitialCISAreaDataFileName>.cis database file. (No actions file will be processed in this case.) The database
file format is still unspecified. If two command-line arguments are present the first will represent a previously saved
database file.

Input file descriptions:

The actions file will have almost the same syntax as for DCIS. Note that use of hard-coded file names will annoy the person
evaluating your program, and you will be charged points for that annoyance. Sample input files will be posted on the
website soon.

Each line of the actions file will contain one of the commands described in the SCIS, CCIS and DCIS specifications, or one
of the commands described below. As before, commands are case-sensitive and take a fixed number of arguments. It may
be assumed that the command names will be valid and each command will include the correct number of arguments.
Command arguments will be tab-delimited.

histogram

A histogram command causes the current area objects, stored in the linked-list database, to be
traversed and a proportional horizontal histogram to be output to the dump file. The bar representing
the area population will begin in column 10. (It will be preceded by the FIPS number of the area in
columns 1-5 and a colon in column 6.) The maximum length for a bar will be 70 characters. The bar
for the area with the largest population will be exactly 70 characters, with the other area bars output
proportionally. The characters representing the bar for an area will be the characters of the area’s
name itself, all capitalized, (see the output section below).

CS 1704 Project 3 Spring 2001

Due: midnight on Monday, April 23 Page 2 of 4

sort <FieldSpecifier>

This causes the database list of CIS area records to be sorted into ascending order by the specified field. The FieldSpecifier
must be one of: FIPS, Pop. These represent ordering upon the FIPS, or population fields. If an sort instruction
includes an invalid FieldSpecifier, the list will not be modified. You must use the selection sort algorithm.

Output description and sample:

As before, output data resulting from a dump command must be written to a file named dbase.txt — use of any other
output file name will annoy the person evaluating your program and you will be charged points for that annoyance. The
format of dump output should be the same as previous programs, except that the xx> MAX CIS STORAGE output at the end of
database dump will no longer be included. Sample output files will also be posted on the course website shortly.

Given the sample database file contents output dump below, the corresponding histogram command output would be:

Programmer: Dwight Barnette
Linked Census Information System
__
Area State FIPS SqrMiles POP90 FEMALE90 MALE90 WHITE90 BLACK90 HISP90 OTHER90
1. Alexandria VA 51510 15.847 111183 58442 52741 76789 24339 10778 4785
2. Bedford VA 51515 8.574 6073 3220 2853 4691 1338 53 0
3. Bristol VA 51520 11.590 18426 10202 8224 17240 1063 64 8
4. Charlottesville VA 51540 11.759 40341 21406 18935 30684 8561 476 94
5. Chesapeake VA 51550 351.980 151976 77509 74467 107399 41662 1913 594
6. Colonial Height VA 51570 9.328 16064 8554 7510 15502 129 161 70
7. Covington VA 51580 5.532 6991 3729 3262 5953 969 27 44
8. Danville VA 51590 17.454 53056 28864 24192 33247 19431 276 25

__
CIS Histogram:

51510: ALEXANDRIAALEXANDRIAALEXANDRIAALEXANDRIAALEXANDRIAA
51515: BED
51520: BRISTOLB
51540: CHARLOTTESVILLECHAR
51550: CHESAPEAKECHESAPEAKECHESAPEAKECHESAPEAKECHESAPEAKECHESAPEAKECHESAPEAKE
51570: COLONIA
51580: COV
51590: DANVILLEDANVILLEDANVILLE
__

Linked List:

You are required to use a linked list to store the CIS area information. Your implementation of this list will be examined.
In order to receive full credit, you must implement the nodes using a well-designed node class and the linked list itself must
be encapsulated using a well-designed list class. In addition, the CIS area must be encapsulated so that the data they store is
logically separated from the node pointers.

Note this mimics the behavior of a C++ STL (Standard Template Library) list object. You are specifically forbidden to use
any C++ STL list objects in this program, or any other sort of predefined dynamic list type. You may base your
implementation on the linked list implementations shown in the textbook, or those shown in the notes and lectures. (The
lecture notes implementation is recommended, as the Carrano implementation has some serious shortcomings.) You may not
use linked list code from any other source. Advanced C++ OOP constructs and concepts, (e.g., inheritance, virtual
functions, templates, etc.), not covered in CS 1704 are also not to be used in this program. Violating these restrictions
would remove major points of this assignment and will certainly result in a large deduction.

CS 1704 Project 3 Spring 2001

Due: midnight on Monday, April 23 Page 3 of 4

Programming Standards:

You'll be expected to observe good programming/documentation standards. All the requirements for documentation and
coding given in the DCIS specification are still in effect. In addition:

Documentation:
! You must describe the purpose of each of your classes in a header comment that precedes the class declaration.
! You must document each data member and function member of your classes, both in the header file containing the

class declaration and in the corresponding source file containing the implementation. The header file does not
have to contain full documentation for each function, but the purpose of each function should be described there.

Coding:
! You must separate the interface of each of your classes from its implementation by placing each class declaration

(interface) in its own header file and the implementation of that class in a corresponding source file. The name of
the class should be used as the name of the header and source files.

! You must protect access to your data by making all data members of your classes private.
! When a node is removed from your linked list, you must dispose of it properly by using delete.
! When you discard your CIS area database list to load an existing one from a file, you must delete every node in

the old list so that your program does not waste memory.
! Memory leaks that might affect the execution or functionality of your program will be penalized. In fact, you

should avoid memory leaks altogether.

Interim Design:
You will produce an interim design for LCIS, and represent that design in a modular structure chart. The structure chart
must indicate your design plans for LCIS. It is expected that your final design will differ from the interim design.
Nevertheless, your interim design should be relatively complete. If the interim design is incomplete or if the differences
between your interim design and your final code are excessive, you will be penalized. That means that you should take the
production of the interim design seriously, but not that you should avoid changes that would improve your final
implementation of CCIS. You must submit this interim design, to the Curator System, no later than midnight Tuesday, April
10. Submit a MS Word.doc file. Do NOT compress, (zip), the interim design submission!

Testing:
Obviously, you should be certain that your program produces the output given above when you use the given input files.
However, verifying that your program produces correct results on a single test case does not constitute a satisfactory testing
regimen. At minimum, you should test your program on all the posted input/output examples. You could make up and try
additional input files as well; of course, you'll have to determine by hand what the correct output would be.

Deliverables:
Your final project submission must include the following (and absolutely no other files):

! all source code (*.cpp and *.h files) comprising your project
! The MS Visual C++ project files (.dsp and .dsw). Do NOT submit the debug/release project subdirectories or

an executable.exe file.
! a revised design document reflecting the final design of your project, at the time of submission; this must

either be in a format that can be viewed in MS Word or be a PDF file.
! one set of input files, named AreaData.txt and Actions.txt, and the corresponding final dump

dbase.txt, and the corresponding saved database file, named LCIS.cis.
! a brief ASCII text readme file, named readme.txt, with any special execution instructions
! either the MS Visual C++ .dsp and .dsw files, or a UNIX makefile, as appropriate

CS 1704 Project 3 Spring 2001

Due: midnight on Monday, April 23 Page 4 of 4

Submissions will be archived, but not scored, by the Curator System. You will submit your project as an archive file in one
of two formats. For Windows users, submit a zipped archive containing the items listed above. (The shareware program
WinZip is very easy to use and is available from the Computing Services website: http://www.ucs.vt.edu/) For
UNIX users, submit a gzipped tar file containing the items listed above.

Note that omitting files from your archive is a classic error. Once you've created your project archive, copy the file to a new
location, unzip it, attempt a build and then test the resulting executable. Submitting an incomplete copy of your project may
delay its evaluation and will result in a substantial loss of points. In particular, if you omit a source file necessary to
compile your program, you will be allowed to supply that file; however, we will then apply a late penalty corresponding to
the date that you have provided a complete copy for evaluation. There will be no exceptions to this penalty. Also note that
including unnecessary files is also a classic error. Visual C++ users: do not zip up the debug subdirectory!

Submitting your project archive:
You will submit your project archive to the Curator System, as described above. All submissions for LCIS must be made
by midnight Monday April 24th. There will be NO late submissions accepted for LCIS. LCIS will be subjected to runtime
testing by the TAs, who will also score your implementation for adherence to the specified programming standards.
Demonstration time slot signup forms will be made available in the CS lab. An announcement will be posted when they are
available. Students will only be allowed to schedule and perform one demonstration. TA/student demonstration assignments
will be posted on the course Web site. You will be allowed to make up to five submissions of LCIS to the Curator. Note
well: your last submission will be graded. There are no exceptions to this policy! Changes made to code during a
demonstration will be heavily penalized.

Pledge:
Each of your project submissions to the Curator System must be pledged to conform to the Honor Code requirements for
this course. Specifically, you must include the following pledge statement in the header comment of the cpp file
containing main():

// On my honor:
//
// - I have not discussed the C++ language code in my program with
// anyone other than my instructor or the teaching assistants
// assigned to this course.
//
// - I have not used C++ language code obtained from another student,
// or any other unauthorized source, either modified or unmodified.
//
// - If any C++ language code or documentation used in my program
// was obtained from another source, such as a text book or course
// notes, that has been clearly noted with a proper citation in
// the comments of my program.
//
// - I have not designed this program in such a way as to defeat or
// interfere with the normal operation of the Curator Server.

Failure to include this pledge in a submission is a violation of the Honor Code.

http://www.ucs.vt.edu/

