
CS 1704 Project 2 Spring 2001

Due: Friday, March 30 Page 1 of 6

DCIS: Dynamic Census Information System

Fundamental Concepts: separate compilation, elementary operator overloading, dynamic

resizable array class of objects

The focus of this programming assignment is to extend your previous work with programmer-defined classes and dynamic
memory. This project requires the modification and extension of CCIS. All of the previous functionality of SCIS and CCIS
will be retained, unless explicitly removed or modified in this specification. Separate compilation is required for this
assignment. Each user-defined class must have its own source code and header files. Other compilation units should be
created that reflect the modular decomposition design of the system. Related system sub-sections should be grouped into
separate compilation units.

To make the program more memory resource efficient, the dynamically allocated array must be implemented in a class. It
must have the ability to dynamically resize itself during execution as the number of area records to be stored grows and
shrinks. Additionally, you will add the ability to save the in-memory CIS area database to a file on disk, and to load a CIS
area database that was previously saved by your program; see the section on the Dynamic Array Class below for details.

DCIS will normally be invoked from the command-line, and the names of the input files will be specified on the command-
line, as:

DCIS <InitialCISAreaDataFileName> <DatabaseActionsFileName>

DCIS will first load the initial CIS area data file, creating an in-memory database structure, and then read and process
actions from the database actions file. As with SCIS and CCIS, when all the specified actions have been processed, DCIS
will exit.

File Descriptions:

The initial area population data file and the script actions file will have precisely the same syntax as per SCIS/CCIS, aside
from some new actions. Note that use of hard-coded names for these files will annoy the person evaluating your program,
and you will be charged points for that annoyance.

The format of the CIS area database file, created by the save command, is not specified. Part of your assignment is to
design a sensible layout for this file. Note that this means that programs from two different students may certainly have
incompatible database file formats, and so will not be able to load database files created by another program. The only
restrictions imposed on your database file design are that you should not waste too much space and that the file must be an
ASCII text file.

Each line of the actions file will contain one of the commands described in the SCIS/CCIS specification, or one of the new
commands described below. As before, commands are case-sensitive and take a fixed number of tab-delimited arguments.
The command names will be valid, and each command will include the correct number of arguments.

save <DatabaseFileName>

This causes the creation of a CIS area database file on disk, in the current directory. The default extension for the file,
“.cis” should be automatically appended to the name. As stated above, the format of this file is up to you, subject to
light restrictions. Saving does not clear the current in-memory database.

load <DatabaseFileName>

This causes the reading of the named, (previously saved) CIS area database file, and the creation of a new in-memory
database holding the information from that file. The default extension for the file, “.cis” should be automatically
appended to the name for opening. Any previous in-memory database should be properly deallocated, (but not
automatically saved to disk), before the file is read. If the named file does not exist, the following error message must be
written to the dump file, “dbase.txt” out:

CS 1704 Project 2 Spring 2001

Due: Friday, March 30 Page 2 of 6

Fatal Error: <DatabaseFileName> does not exist!

The database filename specified in the load command must be substituted for <DatabaseFileName> in the above
message. At this point, your program should gracefully shutdown. If the named file does exist, any previous in-memory
database should be properly deallocated, (but not automatically saved to disk), before the file is read.

Note that if you do not properly implement the save command, there will be absolutely no way to test your implementation
of the load command. For both input files, a newline character will terminate each input line, including the last. You may
assume that all of the input values will be syntactically correct, and that they will be given in the specified order. Updated
sample input files for DCIS will be posted on the course website soon. When they are available, an announcement will be
posted on the course Web site.

Dynamic Array Class of CIS Area Objects

In this program you are required to convert your array database of census area objects into a class. Be aware that a correct
implementation will result in no file input or output, (I/O), being performed by any of the array class member functions.
(Note: this separation of the I/O from a class also applies to the CIS area class.) The array class will contain constructors,
(copy constructor), reporter (get, search, etc.), mutator (set, remove, grow, shrink, sort, etc.) and destructor member
function(s). The array class should be viewed and implemented as a container class that is completely unaware of the type
of object being stored in it. To this end the CIS area class should overload equality and inequality operators as needed by
the array class code.

The Federal Census Bureau has cleverly assigned FIPS numbers so that an ascending FIPS ordering also results in a
state/area ordering. Thus the sort action command will no longer be used. A selection sort on FIPS will be performed
after reading the initial CIS area data; all subsequent commands will maintain the ascending FIPS ordering.

Dynamic Array Management

You will initially allocate an array capable of holding exactly 5 CIS area record objects. If the list outgrows the current
array size, you will dynamically enlarge the array to hold exactly 5 additional CIS area record objects. If the number of
unused array locations grows to 10, you will dynamically shrink the array to hold 5 fewer records (allowing some slack
space for future growth).

This crudely mimics the behavior of a C++ vector object. You are specifically forbidden to use any C++ vector objects or
any other any STL templates in this program, or to use a linked list of any type in place of the specified array. Violating that
restriction would remove one of the major points of this assignment and will certainly result in a major deduction.

Input File Descriptions and Samples:

Initial Area Population File

The format of this file is unchanged from SCIS. A sample AreaData.txt input file is shown below.

Area State FIPS SqrMiles POP90 FEMALE90 MALE90 WHITE90 BLACK90 HISP90 OTHER90
Alexandria VA 51510 15.847 111183 58442 52741 76789 24339 10778 4785
Bedford VA 51515 8.574 6073 3220 2853 4691 1338 53 0
Bristol VA 51520 11.590 18426 10202 8224 17240 1063 64 8
Charlottesville VA 51540 11.759 40341 21406 18935 30684 8561 476 94
Chesapeake VA 51550 351.980 151976 77509 74467 107399 41662 1913 594
Colonial Height VA 51570 9.328 16064 8554 7510 15502 129 161 70
Covington VA 51580 5.532 6991 3729 3262 5953 969 27 44
Danville VA 51590 17.454 53056 28864 24192 33247 19431 276 25

Database Actions File

CS 1704 Project 2 Spring 2001

Due: Friday, March 30 Page 3 of 6

There is no guaranteed limit on the number of actions. The changes to this file have been discussed previously, (see the File
Descriptions section above). A small sample Actions.txt input file is shown below.

save dcis1
del 51500
add Alexandria VA 51510 15.555 111111 44444 55555 16666 33333 17777 4444
del 51590
add Falls Church VA 51610 1.999 9999 5000 4444 8333 299 600 244
del 51610
add Falls Church VA 51610 1.976 9578 5005 4573 8533 298 604 247
add Galax VA 51640 3.778 6670 3663 3007 6219 387 65 41
add Roanoke VA 51770 249.914 96397 51807 44590 71907 23395 665 180
add Winchester VA 51840 9.000 21111 11111 10000 19999 2111 211 88
del 51840
add Winchester VA 51840 9.059 21947 11450 10497 19453 2199 219 86
save dcis2
load dcis1
find 51500
find 51510
find 51840
find 51850
gender 51550
gender 51770
gender 51600
dump

Output Description and Sample:

Your program must write its output data to a file named dbase.txt — use of any other output file name will result in a
runtime testing score of zero. Here is a possible output file corresponding to the given sample input files:

Programmer: Dwight Barnette
Dynamic Census Information System
__
Find: 51500 ***MISSING***
Find: 0 Alexandria VA
Find: 51840 ***MISSING***
Find: 51850 ***MISSING***
Gender: Chesapeake VA Female%= 51.0 Male%= 49.0
Gender: 51770 ***MISSING***
Gender: 51600 ***MISSING***
__
Area State FIPS SqrMiles POP90 FEMALE90 MALE90 WHITE90 BLACK90 HISP90 OTHER90
1. Alexandria VA 51510 15.847 111183 58442 52741 76789 24339 10778 4785
2. Bedford VA 51515 8.574 6073 3220 2853 4691 1338 53 0
3. Bristol VA 51520 11.590 18426 10202 8224 17240 1063 64 8
4. Charlottesville VA 51540 11.759 40341 21406 18935 30684 8561 476 94
5. Chesapeake VA 51550 351.980 151976 77509 74467 107399 41662 1913 594
6. Colonial Height VA 51570 9.328 16064 8554 7510 15502 129 161 70
7. Covington VA 51580 5.532 6991 3729 3262 5953 969 27 44
8. Danville VA 51590 17.454 53056 28864 24192 33247 19431 276 25
10> MAX CIS STORAGE
__

The first line of your output must include your name only. The second line must include the title “Dynamic Census
Information System” only. The third line must be a line of underscore characters. The fourth line will contain output
from the Actions.txt file commands, (find, gender, dump).

The output of dump commands will contain the area data echoed from the current census area database array, aligned under
the appropriate headers. The first and last line of each dump must be a line of underscores. The column field headings
should be repeated for each display listing resulting from a dump. However, other lines (programmer, program title and
underscore lines) are not to be repeated. The dump command will be modified slightly. Each area record output will be
numbered starting at one. At the end of the CIS area record table listing, the current size of the dynamic array will be
output. Note that this is not the same as the number of records stored in the array. Note well that the Actions.txt file is
not required to end in a dump or save command and multiple dump commands may exist in the file.

CS 1704 Project 2 Spring 2001

Due: Friday, March 30 Page 4 of 6

You are not required to use the exact horizontal spacing shown in the example above, but your output must satisfy the
following requirements:

! You must use the specified header and column labels, and print a row of underscore delimiters before and after
the table body, as shown.

! You must arrange your output in neatly aligned columns. Use spaces, not tabs to align your output.
! You must use the same ordering of the columns as shown here, and print the Sqr Miles field with precision

three.

Programming Standards:

You'll be expected to observe good programming/documentation standards. All the discussions in class, in the course notes
and on the course Web site about formatting, structure, and commenting your code should be followed. Some specifics:

Documentation:
! You must include the honor pledge in your program header comment, (see below).
! You must include a header comment that describes what your program does and specifying any constraints or

assumptions of which a user should be aware, (such as preset file names, value ranges, etc.).
! You must include a comment explaining the purpose of every variable or named constant you use in your program.
! You must use meaningful identifier names suggesting the meaning/purpose of the constant, variable, function, etc.
! Precede every major block of your code with a comment explaining its purpose.
! Precede every function you write with a header comment. This should explain in one sentence what the function

does, then describe the logical purpose of each parameter (if any), describe the return value (if any), and state
reasonable pre- and post-conditions and invariants.

! Use the assert function to check for error conditions and verify function pre- and post-conditions whenever
possible.

! You must use indentation and blank lines to make control structures like loops and if-else statements more
readable.

You are also required to conform to the coding requirements specified below.

Coding:
! Implement your solution in a set of separately compiled source files, with user-defined header files.
! Use named constants instead of variables where appropriate.
! Use double variables for all decimal numbers.
! Implement an array class to store the census area data objects.
! Use C++ string objects, not C-style char arrays to store character strings, (aside from string literals).
! Declare and make appropriate use of an enumerated type in your program.
! You must make good use of user-defined functions in your design and implementation. To encourage this, the

body of main() must contain no more than 20 executable statements and the bodies of the other functions you
write must each contain no more than 40 executable statements. An executable statement is any statement other
than a constant or variable declaration, function prototype or comment. Blank lines do not count.

! The definition of main() must be the first function definition in your source file. You may use file-scoped
function prototypes and you may use file-scoped constants. You may also make the class declaration
statements for your array and census area class types file-scoped (in fact you must do this).

! You may not use file-scoped variables of any kind.
! Function parameters should be passed appropriately. Use pass-by-reference only when the called function needs to

modify the parameter. Pass array parameters by constant reference (using const) when pass-by-reference is not
needed. Pointers should be passed by reference, const pointer and/or const target as appropriate.

CS 1704 Project 2 Spring 2001

Due: Friday, March 30 Page 5 of 6

Interim Design:
You will produce an interim design for DCIS, and represent that design in a modular structure chart. The structure chart
must indicate your design plans for DCIS. It is expected that your final design will differ from the interim design.
Nevertheless, your interim design should be relatively complete. If the interim design is incomplete or if the differences
between your interim design and your final code are excessive, you will be penalized. That means that you should take the
production of the interim design seriously, but not that you should avoid changes that would improve your final
implementation of CCIS. You must submit this interim design, to the Curator System, no later than midnight Friday, March
16, (i.e. prior to March 17). Submit a MS Word.doc file. Do NOT compress, (zip), the interim design submission!

Testing:
Obviously, you should be certain that your program produces the output given above when you use the given input files.
However, verifying that your program produces correct results on a single test case does not constitute a satisfactory testing
regimen. At minimum, you should test your program on all the posted input/output examples. You could make up and try
additional input files as well; of course, you'll have to determine by hand what the correct output would be.

Deliverables:
Your final project submission must include the following (and absolutely no other files):

! all source code (*.cpp and *.h files) comprising your project
! The MS Visual C++ project files (.dsp and .dsw). Do NOT submit the debug/release project subdirectories or

an executable.exe file.
! a revised modular structure chart reflecting the final design of your project, at the time of submission; this

must either be in a format that can be viewed in MS Word or be a PDF file.
! one set of input files, named AreaData.txt and Actions.txt, and the corresponding final dump

dbase.txt, and the corresponding saved database file, named DCIS.cis
! a brief ASCII text readme file, named readme.txt, with any special execution instructions
! either the MS Visual C++ .dsp and .dsw files, or a UNIX makefile, as appropriate

Submissions will be archived, but not scored, by the Curator System. You will submit your project as an archive file in one
of two formats. For Windows users, submit a zipped archive containing the items listed above. (The shareware program
WinZip is very easy to use and is available from the Computing Services website: http://www.ucs.vt.edu/) For
UNIX users, submit a gzipped tar file containing the items listed above.

Note that omitting files from your archive is a classic error. Once you've created your project archive, copy the file to a new
location, unzip it, attempt a build and then test the resulting executable. Submitting an incomplete copy of your project may
delay its evaluation and will result in a substantial loss of points. In particular, if you omit a source file necessary to
compile your program, you will be allowed to supply that file; however, we will then apply a late penalty corresponding to
the date that you have provided a complete copy for evaluation. There will be no exceptions to this penalty. Also note that
including unnecessary files is also a classic error. Visual C++ users: do not zip up the debug subdirectory!

Submitting your project archive:
You will submit your project archive to the Curator System, as described above. DCIS will be subjected to runtime testing
by the TAs, who will also score your implementation for adherence to the specified programming standards. Demonstration
time slot signup forms will be made available in the CS lab. An announcement will be posted when they are available.
Students will only be allowed to schedule and perform one demonstration. TA/student demonstration assignments will be
posted on the course Web site. You will be allowed to make up to five submissions of DCIS to the Curator. Note well:
your last submission will be graded. There are no exceptions to this policy! Changes made to code during a demonstration
will be heavily penalized.

http://www.ucs.vt.edu/

CS 1704 Project 2 Spring 2001

Due: Friday, March 30 Page 6 of 6

Pledge:
Each of your project submissions to the Curator system must be pledged to conform to the Honor Code requirements for this
course. Specifically, you must include the following pledge statement in the header comment for your program:

// On my honor:
//
// - I have not discussed the C++ language code in my program with
// anyone other than my instructor or the teaching assistants
// assigned to this course.
//
// - I have not used C++ language code obtained from another student,
// or any other unauthorized source, either modified or unmodified.
//
// - If any C++ language code or documentation used in my program
// was obtained from another source, such as a text book or course
// notes, that has been clearly noted with a proper citation in
// the comments of my program.
//
// - I have not designed this program in such a way as to defeat or
// interfere with the normal operation of the Curator Server.

Failure to include this pledge in a submission is a violation of the Honor Code.

	Initial Area Population File

