
CS 1704 Project 1 Spring 2001

Due: Friday, Feb. 23 Page 1 of 5

CCIS: Class Census Information System

Fundamental Concepts: data class, dynamic array of objects

The point of this assignment is to give you beginning programming experience with programmer-defined classes and
dynamic memory. This project will require you to apply what you have learned about classes and dynamic memory in CS
1704. This assignment will modify and extend SCIS. All of the specified functionality of SCIS will be retained. In order to
make the program more useful, two other action commands will be implemented. The data structure that holds the in-
memory census area database will also be changed; see the section on Dynamic Array Management below for details. CCIS
will first load the initial area population data file as before, creating an in-memory census area database array, and then read
and process actions from the Actions.txt script file. As with SCIS, when all the specified actions have been processed,
CCIS will exit.

File Descriptions:

The initial area population data file and the script actions file will have precisely the same syntax as per SCIS, aside from
some new actions.

Each line of the actions file will contain one of the commands described in the SCIS specification, or one of the new
commands described below. As before, commands are case-sensitive and take a fixed number of tab-delimited arguments.
The command names will be valid, and each command will include the correct number of arguments.

find <FIPS>

This command results in a search being performed to locate the census area object with the corresponding FIPS number.
If located, the command will display the <index> of the object in the array followed by the <area> and <state>
member fields of the object. The command output must be in the following format made to the output file, dbase.txt:

Find: <index> <area> <state>

If a corresponding FIPS object cannot be located the output of the command must be the following, where <FIPS> is
replaced by the FIPS number that was to be found:

Find: <FIPS> ***MISSING***

gender <FIPS>

This command also results in a search being performed to locate the census area object with the corresponding FIPS
number. If located the command will display the <area> and <state> member fields of the object followed by the
percentage breakdown, (to one decimal place), of females and males out of the total population in the area. The
command output must be in the following format made to the output file, dbase.txt:

Gender: <area> <state> Female%= 52.7 Male%= 47.2

If a corresponding FIPS object cannot be located the output of the command must be the following, where <FIPS> is
replaced by the FIPS number that was to be found:

Gender: <FIPS> ***MISSING***

For both input files, a newline character will terminate each input line, including the last. You may assume that all of the
input values will be syntactically correct, and that they will be given in the specified order.

Updated sample input files for CCIS will be posted on the course website soon. When they are available, an announcement
will be posted on the course Web site.

CS 1704 Project 1 Spring 2001

Due: Friday, Feb. 23 Page 2 of 5

Simple Census Area Class & Objects

You are required to change your census area struct type into a simple data class type. This will require the creation
of constructor, reporter (get), mutator (set) and summation member function(s). Under no circumstances is the class
to contain any dynamic memory allocation. The census area class will be the only allowed programmer-defined class
in the program. Since the class will be a simple data class, containing no dynamic memory, no destructor will be
required. In addition, no overloading of the assignment operator will be required. Member functions should be
documented the same as non-member functions. See the course notes for a description of how the class member
functions are to be depicted on the structure chart design.

Dynamic Array Management

You are required to use a dynamically-allocated array of census area class objects. Use of any STL templates for the
dynamic memory allocation or any other purpose is expressly forbidden in this assignment. The dynamic array of census
area objects must not be implemented as a class itself. As before, if the script actions file contains add commands that
would overflow the array capability the commands will be ignored. The array of census area class objects must be allocated
with a size to store 125% of the number of census area records in the AreaData.txt input file, truncated to an integer,

Input File Descriptions and Samples:

Initial Area Population File

The format of this file is unchanged from SCIS. A sample AreaData.txt input file is shown below.

Area State FIPS SqrMiles POP90 FEMALE90 MALE90 WHITE90 BLACK90 HISP90 OTHER90
Alexandria VA 51510 15.847 111183 58442 52741 76789 24339 10778 4785
Bedford VA 51515 8.574 6073 3220 2853 4691 1338 53 0
Bristol VA 51520 11.590 18426 10202 8224 17240 1063 64 8
Buena Vista VA 51530 2.914 6406 3499 2907 6093 282 12 0
Charlottesville VA 51540 11.759 40341 21406 18935 30684 8561 476 94
Chesapeake VA 51550 351.980 151976 77509 74467 107399 41662 1913 594
Clifton Forge VA 51560 3.491 4679 2585 2094 3967 695 25 0
Colonial Height VA 51570 9.328 16064 8554 7510 15502 129 161 70
Covington VA 51580 5.532 6991 3729 3262 5953 969 27 44
Danville VA 51590 17.454 53056 28864 24192 33247 19431 276 25

Database Actions File

There is no guaranteed limit on the number of actions. The changes to this file have been discussed previously, (see the File
Descriptions section above). A small sample Actions.txt input file is shown below.

sort Area
del 51500
add Alexandria VA 51510 15.555 111111 44444 55555 16666 33333 17777 4444
del 51590
add Falls Church VA 51610 1.999 9999 5000 4444 8333 299 600 244
del 51610
add Falls Church VA 51610 1.976 9578 5005 4573 8533 298 604 247
sort FIPS
add Galax VA 51640 3.778 6670 3663 3007 6219 387 65 41
add Roanoke VA 51770 249.914 96397 51807 44590 71907 23395 665 180
add Winchester VA 51840 9.000 21111 11111 10000 19999 2111 211 88
del 51840
add Winchester VA 51840 9.059 21947 11450 10497 19453 2199 219 86
sort Area
find 51500
find 51510
find 51840
find 51850
gender 51550
gender 51770
gender 51600
dump

CS 1704 Project 1 Spring 2001

Due: Friday, Feb. 23 Page 3 of 5

Output description and sample:

Your program must write its output data to a file named dbase.txt — use of any other output file name will result in a
runtime testing score of zero. Here is a possible output file corresponding to the given sample input files:

Programmer: Dwight Barnette
Class Census Information System

Find: 51500 ***MISSING***
Find: 0 Alexandria VA
Find: 51840 ***MISSING***
Find: 51850 ***MISSING***
Gender: Chesapeake VA Female%= 51.0 Male%= 49.0
Gender: Roanoke VA Female%= 53.7 Male%= 46.3
Gender: 51600 ***MISSING***

Area State FIPS SqrMiles POP90 FEMALE90 MALE90 WHITE90 BLACK90 HISP90 OTHER90
Alexandria VA 51510 15.847 111183 58442 52741 76789 24339 10778 4785
Bedford VA 51515 8.574 6073 3220 2853 4691 1338 53 0
Bristol VA 51520 11.590 18426 10202 8224 17240 1063 64 8
Buena Vista VA 51530 2.914 6406 3499 2907 6093 282 12 0
Charlottesville VA 51540 11.759 40341 21406 18935 30684 8561 476 94
Chesapeake VA 51550 351.980 151976 77509 74467 107399 41662 1913 594
Clifton Forge VA 51560 3.491 4679 2585 2094 3967 695 25 0
Colonial Height VA 51570 9.328 16064 8554 7510 15502 129 161 70
Covington VA 51580 5.532 6991 3729 3262 5953 969 27 44
Falls Church VA 51610 1.976 9578 5005 4573 8533 298 604 247
Galax VA 51640 3.778 6670 3663 3007 6219 387 65 41
Roanoke VA 51770 249.914 96397 51807 44590 71907 23395 665 180

The first line of your output must include your name only. The second line must include the title “Class Census
Information System” only. The third line must be a line of underscore characters. The first and last line of each dump
must be a line of underscores. The second line of a dump command output will contain the area data echoed from the
current census area database array, aligned under the appropriate headers. The column field headings should be repeated for
each display listing resulting from a dump. However, the three lines (programmer, program title and underscore lines) are
not to be repeated.

You are not required to use the exact horizontal spacing shown in the example above, but your output must satisfy the
following requirements:

! You must use the specified header and column labels, and print a row of underscore delimiters before and after
the table body, as shown.

! You must arrange your output in neatly aligned columns. Use spaces, not tabs to align your output.
! You must use the same ordering of the columns as shown here, and print the Sqr Miles field with precision

three.

Programming Standards:

You'll be expected to observe good programming/documentation standards. All the discussions in class, in the course notes
and on the course Web site about formatting, structure, and commenting your code should be followed. Some specifics:

Documentation:
! You must include the honor pledge in your program header comment, (see below).
! You must include a header comment that describes what your program does and specifying any constraints or

assumptions of which a user should be aware, (such as preset file names, value ranges, etc.).
! You must include a comment explaining the purpose of every variable or named constant you use in your program.
! You must use meaningful identifier names suggesting the meaning/purpose of the constant, variable, function, etc.
! Precede every major block of your code with a comment explaining its purpose.

CS 1704 Project 1 Spring 2001

Due: Friday, Feb. 23 Page 4 of 5

! Precede every function you write with a header comment. This should explain in one sentence what the function
does, then describe the logical purpose of each parameter (if any), describe the return value (if any), and state
reasonable pre- and post-conditions and invariants.

! Use the assert function to check for error conditions and verify function pre- and post-conditions whenever
possible.

! You must use indentation and blank lines to make control structures like loops and if-else statements more
readable.

You are also required to conform to the coding requirements specified below.

Coding:
! Implement your solution in a single source file, with no user-defined header files. (This restriction is for ease of

testing and evaluation.)
! Use named constants instead of variables where appropriate.
! Use double variables for all decimal numbers.
! Use an array of objects to store the census area data.
! Use C++ string objects, not C-style char arrays to store character strings, (aside from string literals).
! Declare and make appropriate use of an enumerated type in your program.
! You must make good use of user-defined functions in your design and implementation. To encourage this, the

body of main() must contain no more than 20 executable statements and the bodies of the other functions you
write must each contain no more than 40 executable statements. An executable statement is any statement other
than a constant or variable declaration, function prototype or comment. Blank lines do not count.

! You must write at least ten functions, besides main().
! The definition of main() must be the first function definition in your source file. You may use file-scoped

function prototypes and you may use file-scoped constants. You may also make the class declaration
statement for your census area class type file-scoped (in fact you must do this).

! You may not use file-scoped variables of any kind.
! Function parameters should be passed appropriately. Use pass-by-reference only when the called function needs to

modify the parameter. Pass array parameters by constant reference (using const) when pass-by-reference is not
needed. Pointers should be passed by reference, const pointer and/or const target as appropriate.

Interim Design:
You will produce an interim design for CCIS, and represent that design in a modular structure chart. The structure chart
must indicate your design plans for CCIS. It is expected that your final design will differ from the interim design.
Nevertheless, your interim design should be relatively complete. If the interim design is incomplete or if the differences
between your interim design and your final code are excessive, you will be penalized. That means that you should take the
production of the interim design seriously, but not that you should avoid changes that would improve your final
implementation of CCIS. You must submit this interim design, to the Curator System, no later than midnight Friday, Feb. 9,
(i.e. prior to Feb 10). Submit a MS Word.doc file. Do NOT compress, (zip), the interim design submission!

Testing:
Obviously, you should be certain that your program produces the output given above when you use the given input files.
However, verifying that your program produces correct results on a single test case does not constitute a satisfactory testing
regimen.

At minimum, you should test your program on all the posted input/output examples. The same program that will be used to
test your solution generated those input/output examples. You could make up and try additional input files as well; of
course, you'll have to determine by hand what the correct output would be.

CS 1704 Project 1 Spring 2001

Due: Friday, Feb. 23 Page 5 of 5

Submitting your solution:
You will submit your source code electronically, as described here. CCIS will be subjected to runtime testing by the
Curator automated grading system. The relative weights of the two scores will be announced. You will be allowed to make
up to five submissions of CCIS to the Curator.

Instructions for submitting your program are available in the Student Guide at the Curator Homepage:
http://ei.cs.vt.edu/~eags/Curator.html

Read the instructions carefully.

Note well: your submission that receives the highest score will be graded for adherence to these requirements, whether it is
your last submission or not. There will be absolutely no exceptions to this policy! If two or more of your submissions are
tied for highest, the earliest of those will be graded and also evaluated by the TAs who will assess a deduction for adherence
to the specified programming standards. The deduction will be applied to your highest score from the Curator. Therefore:
implement and comment your C++ source code with these requirements in mind from the beginning rather than planning to
clean up and add comments later.

Pledge:
Each of your project submissions to the EAGS must be pledged to conform to the Honor Code requirements for this course.
Specifically, you must include the following pledge statement in the header comment for your program:

// On my honor:
//
// - I have not discussed the C++ language code in my program with
// anyone other than my instructor or the teaching assistants
// assigned to this course.
//
// - I have not used C++ language code obtained from another student,
// or any other unauthorized source, either modified or unmodified.
//
// - If any C++ language code or documentation used in my program
// was obtained from another source, such as a text book or course
// notes, that has been clearly noted with a proper citation in
// the comments of my program.
//
// - I have not designed this program in such a way as to defeat or
// interfere with the normal operation of the Curator Server.

Failure to include this pledge in a submission is a violation of the Honor Code.

http://ei.cs.vt.edu/~eags/Curator.html

	Initial Area Population File

