
CS 1706 Spring 92
Assignment 2: Multi-File Viewer (MFV)
Due Date: February 27, 1992 in labs

Problem
Code a program to allow a user to view the top text file, (of a

stack of text files), by scrolling and paging.

Purpose
This assignment will provide experience with the following

coding features: 1. Separate Compilation (required); 2. Linked-Lists 3.
Text-Windowing System and 4. Project Make Facilities, (not required).

Discussion
The primary viewing/browsing features of this program shall now be discussed.

The program will display 20 lines of a file at a time, in rows 3-22 on the screen,
(hereafter referred to as the display area). The user may browse through a MFV file by
either one of three methods.

The first navigation facility is paging. This involves ‘moving’, (changing the
display area), to the preceding or succeeding 20 lines in the file by pressing 'U' or 'u' /
'D' or 'd' respectively. Turbo users should use the PgUp and PgDn keys.

The ↑ ↓ cursor keys will allow the user to scroll the display area contents one
line at a time, up and down respectively. When depressing either the ↑ ↓ cursor keys,
the display area 20 line w i n d o w into the MFV file will be scrolled one line
backward/forward respectively. If at any point in the viewing, if the user attempts to
scroll above/beyond the top/bottom of the file an error message must be inversely
displayed on line 23 and the bell (control-h) sounded.

Thirdly, MFV will also allow the top or bottom of the file to be moved to directly,
by the user depressing either the ‘T’ or ‘t’ / ‘B’ or ‘b’ keys, respectively. The display
area should never contain blank lines for files with > 20 lines. Consider a file with 100
lines, if currently lines 11 through 30 are displayed and page up is hit the first 20 lines
in the file should now be on the screen. Similarly, if lines 71 through 90 are displayed
and page down is hit, the last 20 lines (81..100) are then displayed. For small files with
<20 lines, page up/down would receive an error message and line up/down, ↑ ↓, should
not cause any line to scroll off the display. Robustness and correctness, not speed of
display, should be the over-riding factors governing the implementation of the view
opera t ions .

Execution
M F V ’s execution control flow will be addressed next. The program should

initially present the user with a startup screen displaying the name of the program, a
brief 3-4 line explanation of the program and the programmer’s name, address and
telephone number. Some minor creativity in the presentation of the startup screen is
desired. After either the user hits any key, or either approximately 5-7 seconds has
passed, the startup screen is cleared. A brief help screen should appear, explaining the
operation of the program to the user, until the user is ready to continue.

Following the brief help screen the user is prompted for the name of the initial
MFV file they wish to browse. All input prompts to the user should occur on line 24. The
user should be requested to wait while the file is being input from secondary memory.
The linked-list for the file’s lines is now setup. At this point the viewing operations,
discussed above, are at the user’s disposal to navigate through the file.

At any time during execution, a user may request that another file be opened or
the current file be closed, (using the ‘O’, ‘o’ or ‘C’, ‘c’ keys respectively). When a new
file is opened, (prompting occurs the same as at startup described previously), the
current MFV file being viewed is ‘pushed’ onto the M F V file stack. The new file is then

read and setup for viewing, with the first 20 lines being shown in the display area.
When the current file is closed the previously pushed file is automatically restored as
the current file. This may be implemented in one of two ways: 1. the file may opened
again, (i.e. read and setup again), with the first ‘page’ being displayed; 2. separate lists
may be maintained for each file in the MFV stack and the current file. If the second
method is used, the restored file should reopen with the same file page being displayed
as when it was pushed. Turbo users should be cautious about selecting the second
method due to limited memory. A user may also elect to quit MFV at any time during
browsing by depressing the ‘q’ or ‘Q’ keys.

Abstract Data Type
The main data structure required for this assignment is an unordered non-

circular double linked-list, to hold the text file lines, implemented with PASCAL
pointers, (text book operations may be used & modified). This will permit viewing of
arbitrarily long files. Additional operations should be added as necessary to compose a
viewing or file window pane abstract data type.

Text Windowing
The use of a text windowing package is not required for this program, but is

strongly recommended. The text windowing facilities will greatly enhance the
professional l o o k - a n d - f e e l of your program. This program will be used, almost
unmodified, in the final course project, comprising approximately 20...25% of the final
code.

Input
Sample data input files will be provided shortly for copying in the McB 116 lab.

Assumptions
No existence checking for file names is required. No file will be large enough to

exhaust the heap. All lines in a file are < 78 characters in length. All files to be viewed
are in the current directory. The MFV maximum stack size is 20.

Grading
Turn in hard copies of a structure chart, source code, input/output files,

program m a k e f i l e (if employed) specifying module dependencies, and a diskette
containing: ASCII source code, executable image, I/O files, and an ASCII readme f i l e
with execution instructions. The source code file must be named M F V . p a s and the
executable image M F V . The disk should contain no subdirectories and protection should
be set to allow anyone access. All materials to be graded must be placed in a folder,
neatly labeled, with the disk securely fastened.

In addition, your GTA will require you to demonstrate your program in the
McBryde 116 PC lab during lab time. To receive partial credit for programs that are
non-working, or are not fully functional, a brief one or two paragraph description of
the problem(s) m u s t be included in the assignment folder. The location, routine
minimum, mus t also be specified along with possible corrections that need to be made.

