
CS 1704 Project 1 Fall 2001

CCDB: Class Computer Database

Fundamental Concepts: data class, dynamic array of objects

The point of this assignment is to give you beginning programming experience with programmer-defined classes and
dynamic memory. This project will require you to apply what you have learned about classes and dynamic memory in CS
1704. This assignment will modify and extend SCDB. All of the specified functionality of SCDB will be retained. In
order to make the program more useful, two other action commands will be implemented. The data structure that holds the
in-memory computer system database will also be changed; see the section on Dynamic Array Management below for
details. CCDB will first load the initial computer system data file as before, creating an in-memory computer system
database array, and then read and process actions from the Actions.txt script file. As with SCDB, when all the
specified actions have been processed, CCDB will exit.

Interim Design:
You will produce an interim design for CCDB, and represent that design in a modular structure chart. The structure chart
must indicate your design plans for CCDB. It is expected that your final design will differ from the interim design.
Nevertheless, your interim design should be relatively complete. If the interim design is incomplete or if the differences
between your interim design and your final code are excessive, you will be penalized. That means that you should take the
production of the interim design seriously, but not that you should avoid changes that would improve your final
implementation of CCDB. You must submit this interim design, to the Curator System, no later than midnight Wednesday,
Sept. 26, (i.e. prior to Sept. 27). Submit a MS Word.doc file. Do NOT compress, (zip), the interim design submission! See
the course web site for examples and restrictions on the interim design and file submission.

Simple Computer System Class & Objects

You are required to change your computer system struct type into a straightforward data class type. This will
require the creation of constructor, reporter (get), mutator (set) and perhaps other member function(s). Under no
circumstances is the class to contain any dynamic memory allocation. The computer system class will be the only
allowed programmer-defined class in the program. Since the class will be a simple data class, containing no
dynamic memory, no destructor will be required. In addition, no overloading of the assignment operator will be
required. Member functions should be documented the same as non-member functions. See the course notes for a
description of how the class member functions are to be depicted on the structure chart design.

Dynamic Array Management

You are required to use a dynamically-allocated array of computer system class objects. Use of any STL templates for the
dynamic memory allocation or any other purpose is expressly forbidden in this assignment. The dynamic array of computer
system objects must not be implemented as a class itself. As before, if the script actions file contains add commands that
would overflow the array capability the commands will be ignored. The array of computer system class objects must be
allocated with a size to store 125% of the number of computer system records in the CompSys.txt input file, truncated
to an integer.

File Descriptions:

The initial computer system data file and the script actions file will have precisely the same syntax as per SCDB, aside
from some new actions.

Each line of the actions file will contain one of the commands described in the SCDB specification, or one of the new
commands described below. As before, commands are case-sensitive and take a fixed number of tab-delimited arguments.
The command names will be valid, and each command will include the correct number and type of arguments.

Due: Monday, Oct. 8 Page 1 of 6

CS 1704 Project 1 Fall 2001

find <tab> <model>

This command results in a search being performed to locate the computer system object with the corresponding model.
If located, the command will display the <index> of the object in the array followed by the <manufacturer> and
<price> member fields of the object. The command output must be in the following format made to the output file,
dbase.txt:

Find: <index> <model> <manufacturer> <price>

If a corresponding model object cannot be located the output of the command must be the following, where <model>
is replaced by the model name that was to be found:

Find: <model> *MISSING*

update <tab> <model> <tab> <price>

If the given model name is found in the model names array, reset the price value for that model to the value given in the
command and print the updated model data. The command output must be in the following format made to the output
file, dbase.txt:

Update: <index> <model> <manufacturer> <price>

If a corresponding model object cannot be located the output of the command must be the following, where <model>
is replaced by the model name that was to be found:

Update: <model> *MISSING*

For both input files, a newline character will terminate each input line, including the last. You may assume that all of the
input values will be syntactically correct, and that they will be given in the specified order.

Updated sample input files for CCDB will be posted on the course website soon. When they are available, an
announcement will be posted on the course Web site.

Input File Descriptions and Samples:

Initial Computer system File

The format of this file is unchanged from SCDB. A sample CompSys.txt input file is shown below.

#4explorermicro.com systems
#Model Manufacturer Price Processor Speed RAM (MB) Drive (MB) Video (MB) Cache (K) CD Sound Case
MT-359AD 4explorermicro.com 717 Pentium III 1000 64 20000 8 512K 50X 3D Soundpro ATX
MT-359AF 4explorermicro.com 567 Pentium III 1000 128 20000 32 None 50X 3D Soundpro ATX
MT-359AL 4explorermicro.com 777 Pentium III 1000 64 40000 32 None 50X 3D Soundpro ATX
MT-359AT 4explorermicro.com 1469 Pentium III 1000 64 60000 32 None 50X 3D Soundpro ATX
MT-359AN 4explorermicro.com 1699 Pentium III 1000 128 40000 32 None 50X 3D Soundpro ATX
MT-359AV 4explorermicro.com 1899 Pentium III 1000 128 60000 32 None 50X 3D Soundpro ATX

Due: Monday, Oct. 8 Page 2 of 6

CS 1704 Project 1 Fall 2001

Database Actions File

There is no guaranteed limit on the number of actions. The changes to this file have been discussed previously, (see the File
Descriptions section above). A small sample Actions.txt input file is shown below.

#4explorermicro.com systems: Actions.txt
#COM ARGS
sort model
#non-existent delete
del MT-359AE
#delete first record
del MT-359AD
#add record back
add MT-359AD 4explorermicro.com 727 Pentium III 1000 64 20000 8 512K

50X 3D Soundpro ATX
#delete last record
del MT-359AV
#add record back
add MT-359AV 4explorermicro.com 1999 Pentium III 1000 128 60000 32 None

50X 3D Soundpro ATX
sort price
#delete middle record
del MT-359AL
#add record back
add MT-359AL 4explorermicro.com 797 Pentium III 1000 64 40000 32 None

50X 3D Soundpro ATX
#attempt to add existing record
add MT-359AL 4explorermicro.com 999 Pentium III 1000 64 40000 32 None

50X 3D Soundpro ATX
sort model
dump
#non-existent update
update MT-359AE 9999
update next to last record
update MT-359AT 1445
#non-existent find
find MT-359AE
#find next to last record
find MT-359AT
#Script End

Output description and sample:

As previously, your program will produce two output files: 1. a log file and 2. output report file. The log file named
“ccdblog.txt”, will record the processing of the actions file as before. For the above Actions.txt input file the
corresponding ccdblog.txt would be:

Programmer: Dwight Barnette
Class Computers Database Log

COMMAND ARG ACTIVITY COMMENT
001 sort model: SUCCESS
002 del MT-359AE: FAILURE Not Found
003 del MT-359AD: SUCCESS
004 add MT-359AD: SUCCESS
005 del MT-359AV: SUCCESS
006 add MT-359AV: SUCCESS
007 sort price: SUCCESS
008 del MT-359AL: SUCCESS
009 add MT-359AL: SUCCESS
010 add MT-359AL: FAILURE Present
011 sort model: SUCCESS
012 dump SUCCESS
013 update MT-359AE: FAILURE Not Found
014 update MT-359AT: SUCCESS
015 find MT-359AE: FAILURE Not Found
016 find MT-359AT: SUCCESS

Due: Monday, Oct. 8 Page 3 of 6

CS 1704 Project 1 Fall 2001

Your program must write its output data to a file named dbase.txt — use of any other output file name will result in a
runtime testing score of zero. Here is a possible output file corresponding to the given sample input files:

Programmer: Dwight Barnette
Class Computers Database
__
IDX Model Manufacturer Price Processor Speed RAM (MB) Drive (MB) Video (MB) Cache (K) CD Sound Case
000 MT-359AD 4explorermicro.com 727 Pentium III 1000 64 20000 8 512K 50X 3D Soundpro ATX
001 MT-359AF 4explorermicro.com 567 Pentium III 1000 128 20000 32 None 50X 3D Soundpro ATX
002 MT-359AL 4explorermicro.com 797 Pentium III 1000 64 40000 32 None 50X 3D Soundpro ATX
003 MT-359AN 4explorermicro.com 1699 Pentium III 1000 128 40000 32 None 50X 3D Soundpro ATX
004 MT-359AT 4explorermicro.com 1469 Pentium III 1000 64 60000 32 None 50X 3D Soundpro ATX
005 MT-359AV 4explorermicro.com 1999 Pentium III 1000 128 60000 32 None 50X 3D Soundpro ATX
[007] END
__
Update: MT-359AE *MISSING*
Update: 004 MT-359AT 4explorermicro.com 1445
Find: MT-359AE *MISSING*
Find: 004 MT-359AT 4explorermicro.com 1445

The dump command will be modified slightly. Each computer record output will be numbered starting at zero. At the end
of the computer system record table listing, the current size of the dynamic array will be output. Note that this is not the
same as the number of objects stored in the array. Note well that the Actions.txt file is not required to end in a dump
command and multiple dump commands may exist in the file. The first line of your output must include your name only.
The second line must include the title “Class Computers Database” only. The first and last line of each dump must
be a line of underscores. The second line of a dump command output will contain the area data echoed from the current
computer system database array, aligned under the appropriate headers. The column field headings should be repeated for
each display listing resulting from a dump. However, the first two lines (programmer and program title) are not to be
repeated.

You are not required to use the exact horizontal spacing shown in the example above, but your output must satisfy the
following requirements:

! You must use the specified header and column labels, and print a row of underscore delimiters before and
after the table body, as shown.

! You must arrange your output in neatly aligned columns. Use spaces, not tabs to align your output.
! You must use the same ordering of the columns as shown here.

Programming Standards:

You'll be expected to observe good programming/documentation standards. All the discussions in class, in the course
notes and on the course Web site about formatting, structure, and commenting your code should be followed. Some
specifics:

Documentation:
! You must include the honor pledge in your program header comment, (see below).
! You must include a header comment that describes what your program does and specifying any constraints or

assumptions of which a user should be aware, (such as preset file names, value ranges, etc.).
! You must include a comment explaining the purpose of every variable or named constant you use in your

program.
! You must use meaningful identifier names suggesting the meaning/purpose of the constant, variable, function, etc.
! Precede every major block of your code with a comment explaining its purpose.
! Precede every function you write with a header comment. This should give the name of the function, explain in

one sentence what the function does, describe any special algorithm used/implemented, give a list of the other
functions that call this function, give a list of the other functions that this function calls, then describe the logical
purpose of each parameter (if any), describe the return value (if any), give your name as the author of the function,
and state reasonable pre- and post-conditions and invariants.

! Use the assert function to check for error conditions and verify function pre- and post-conditions whenever
possible.

Due: Monday, Oct. 8 Page 4 of 6

CS 1704 Project 1 Fall 2001

! You must use indentation and blank lines to make control structures like loops and if-else statements more
readable.

You are also required to conform to the coding requirements specified below.

Coding:
! Implement your solution in a single source file, with no user-defined header files. (This restriction is for ease of

testing and evaluation.)
! Use named constants instead of variables where appropriate.
! Use double variables for all decimal numbers.
! Use an array of objects to store the computer system data.
! Use C++ string objects, not C-style char arrays to store character strings, (aside from string literals).
! Declare and make appropriate use of an enumerated type in your program.
! You must make good use of user-defined functions in your design and implementation. To encourage this, the

body of main() must contain no more than 20 executable statements and the bodies of the other functions you
write must each contain no more than 40 executable statements. An executable statement is any statement other
than a constant or variable declaration, function prototype or comment. Blank lines do not count.

! You must write at least ten functions, besides main().
! The definition of main() must be the first function definition in your source file. You may use file-scoped

function prototypes and you may use file-scoped constants. You may also make the class declaration
statement for your computer system class type file-scoped (in fact you must do this).

! You may not use file-scoped variables of any kind.
! Function parameters should be passed appropriately. Use pass-by-reference only when the called function needs

to modify the parameter. Pass array parameters by constant reference (using const) when pass-by-reference is
not needed. Pointers should be passed by reference, const pointer and/or const target as appropriate.

Stepwise Refinement:

For medium and large sized programs it is critical that programmers practice incremental implementation. Here is one
possible suggested order of implementation:

! Define the computer object data class. Implement and test each of the member functions.
! Declare a static data object array. Print it out to verify the constructor initialization.
! Determine the number of records in the CompSys.txt input file.
! Change the static data object array into a dynamic data object array of size 1.25 * number of input records.
! Read the initial model data into the data array. Print out the model data to verify the correct input.
! Implement reading of the actions file. Initially, don't worry about actually carrying out any of the commands,

just find the command word, and any parameters, and echo them to the log file to be sure that you're reading
them correctly. Also verify that you're stopping on the end of the file correctly.

! Add a function (or two) to handle the update command.
! Add a function (or two) to handle the find command.
! Modify the dump command.

If you get stuck on handling a command, or run out of time, echo the command to the log file and print a message (like:
"Command not implemented"). That way you'll at least may receive partial credit.

Testing:
Obviously, you should be certain that your program produces the output given above when you use the given input files.
However, verifying that your program produces correct results on a single test case does not constitute a satisfactory testing
regimen.

Due: Monday, Oct. 8 Page 5 of 6

CS 1704 Project 1 Fall 2001

At minimum, you should test your program on all the posted input/output examples. The same program that will be used
to test your solution generated those input/output examples. You could make up and try additional input files as well; of
course, you'll have to determine by hand what the correct output would be.

Submitting your solution:
You will submit your source code electronically, as described here. CCDB will be subjected to runtime testing by the
Curator automated grading system. Your code will also be evaluated by a GTA for adherence to these specification
requirements, software engineering principles and good programming practices. Deductions incurred will be applied to
your project Curator grade. You will be allowed to make up to five submissions of CCDB to the Curator.

Instructions for submitting your program are available in the Student Guide at the Curator Homepage:
http://ei.cs.vt.edu/~eags/Curator.html

Read the instructions carefully.

Note well: your submission that receives the highest score will be graded for adherence to these requirements, whether it
is your last submission or not. There will be absolutely no exceptions to this policy! If two or more of your submissions
are tied for highest, the earliest of those will be graded and also evaluated by the TAs who will assess a deduction for
adherence to the specified programming standards. The deduction will be applied to your highest score from the Curator.
Therefore: implement and comment your C++ source code with these requirements in mind from the beginning rather than
planning to clean up and add comments later.

Pledge:
Each of your project submissions to the EAGS must be pledged to conform to the Honor Code requirements for this
course. Specifically, you must include the following pledge statement in the header comment for your program:

// On my honor:
//
// - I have not discussed the C++ language code in my program with
// anyone other than my instructor or the teaching assistants
// assigned to this course.
//
// - I have not used C++ language code obtained from another student,
// or any other unauthorized source, either modified or unmodified.
//
// - If any C++ language code or documentation used in my program
// was obtained from another source, such as a text book or course
// notes, that has been clearly noted with a proper citation in
// the comments of my program.
//
// - I have not designed this program in such a way as to defeat or
// interfere with the normal operation of the Curator Server.

Failure to include this pledge in a submission is a violation of the Honor Code.

Due: Monday, Oct. 8 Page 6 of 6

	Initial Computer system File

