
CS 1704 Project 0 Fall 2000

Due: midnight on Friday, September 8 Page 1 of 5

Fundamental Concepts: array of structures, string objects, searching and sorting

The point of this assignment is to validate your understanding of the basic concepts presented in CS 1044. If you have
much difficulty implementing the following specification correctly, that may be good evidence that you are not ready to
attempt CS 1704. Feel free to consult the online notes for CS 1044 as a reference.

Follow the given specification exactly — this assignment will be scored using an automated grading system and deviations
will generally be penalized heavily.

SAMS: Statistical Appraisal Movie System

A local movie rental company needs to track information about its movies and tapes. The program will read an input file
that will specify movie/tape information (see file description below). The movie file will consist of two lines of data for
each movie. The first line will contain typical film data. This line will be followed by a short one line review of the movie.
You should typedef an appropriate structure variable to store all the information about each movie.

The program will first read and store the movie data, in an in-memory database structure, and then process a second input
file specifying actions to take on the movie data. Supported actions include adding a movie to the database, deleting a
movie from the database, sorting the database on various fields (keys), and dumping a display of the database to file. When
all the specified actions have been processed, the program will exit.

Input file descriptions and samples:

This program requires the use of two input files. The first file contains the rental company’s movie information and will be
named movie.data. The second contains a list of actions to be performed on the movie database, and will be named
actions.data. Note that, due to the automated testing process, use of incorrect input file names will usually result in a
score of zero.

A newline character will terminate each input line, including the last. You may assume that all of the input values will be
syntactically correct, and that they will be given in the specified order.

Initial Movie File

The first line of the movie input file is a label line that specifies column labels. Each of
the following pair of lines comprises a movie record. The first line of each pair
specifies nine data fields, separated by one or more tab characters. The order of the
data fields on the line and the type of value in the field are given in the table at the
right. The second line of each pair is simply a character string containing a very short
synopsis/review of the film.

A sample movie.data input file is shown below, (the first two lines preceding the
box are column label numbers and are not part of the file).

00000000011111111112222222222333333333344444444445555555555666666666677777777778
12345678901234567890123456789012345678901234567890123456789012345678901234567890
// Title Director Release Performers Rating Stars Stock Rental Serial
Dragon Slayer Unknown 0 R Richardson G 3.5 2 1 FAN121610
Whoever produced this movie should be Walt Disney's son.
Alien Cameron 1978 Sigourney Weaver PG13 4.0 3 0 SCI010121
The special effects were not only technically good, but innovative.
Star Wars G Lucas 1976 Hamill, Ford, Fisher G 5.0 5 2 SCI328412
A classic SciFi version of the eternal conflict of Good versus Evil.
Blade Runner R Scott 1982 H Ford, R Hauer R 3.0 2 0 SCI216193
This movie is a cult classic, a must see.
Predator Unknown 1988 Arnie R 3.0 1 1 SCI482617
Alien picture where IT doesn't land in boondocks fighting Jeb and Billy Bob.
Terminator Unknown 0 Arnie, Linda Hamilton R 2.5 2 0 SCI628105
Robot from future trying to change the future.

Movie Data
Field Name

Field Contents

Title character string
Director character string
Release Year integer
Performers character string
Rating character string
Stars real
Stock integer
Rental integer
Serial character string

CS 1704 Project 0 Fall 2000

Due: midnight on Friday, September 8 Page 2 of 5

There will never be two different movie records with the same Serial number in the database at the same time. Each of the
other fields may be duplicated within the database. There will be no more than 100 items in the movies database at any
time.

You are required to use a statically-allocated array of structures to store the movie information. Use of pointers and/or
dynamic memory allocation is expressly forbidden in this assignment.

Note that the alignment of the movie information in the initial movie file may not be perfect, because the
combination of tabs may not align the numbers/fields correctly. This is a good example of why it is suggested that
you use spaces (not tabs) to align your output. Here, the tab character is used because it makes it somewhat easier
for you to parse the item descriptions.

Database Actions File

Each line of the actions file will contain one of the commands described below. Commands are case-sensitive and take a
fixed number of arguments. The command names will be valid and each command will include the correct number of
arguments. Command arguments will be tab-delimited.

add <Title> <Director> <Release Year> <Performers> <Rating> <Stars> <Stock>

<Rental> <Serial> <Review>

This causes the insertion of a new movie record into the database list. Insertion should place the new record
in the proper location with respect to the current sort ordering of the list. The initial movie list will be given
in arbitrary order, and you must initially sort it by serial number before further processing. If an add
instruction specifies the <Serial> number of an item that’s already in the list, the list will not be
modified. Note that due to page limitations, (not file line size), the last three arguments of the add
command description above have wrapped onto the next line. In the actual actions.data input file they
will all be tab separated on the same line. Note: appending the new record to the end of the array and re-
sorting is not an insertion operation and will be penalized. The number of movie records stored is at the
maximum, 100, and an add operation is encountered then the list must not be modified and the add
operation will be skipped and never processed.

del <Serial>

This causes the deletion of the movie record for the indicated <Serial> number from the database list. If
a del instruction specifies the number of an item that’s not in the list, the list will not be modified.

sort <FieldSpecifier>

This causes the movie list to be sorted into ascending order by the specified field. The FieldSpecifier must
be one of: Serial, or Title. If a sort instruction specifies an invalid FieldSpecifier, the list will not
be modified. You should use the selection sort algorithm, ordering the records by the string fields using
ASCII ordering, (not alphabetically).

dump

This causes the movie information, (excluding the one-line reviews) to be printed to an output file named
dbase.list. Printing should be in the physical order of the list resulting from the last sort. More than
one dump command may exist in the actions file in which case the movie listings for each dump command
must be appended to the last listing.

CS 1704 Project 0 Fall 2000

Due: midnight on Friday, September 8 Page 3 of 5

There is no guaranteed limit on the number of actions. A small sample actions.data input file is shown below. Note
that due to page limitations, (not file line size), some of the fields and one line reviews of the add commands have wrapped
onto the next lines. In the actual actions.data input file they will all be tab separated on the same line.

del SCI628105
add Terminator Cameron 0 Arnie, Linda Hamilton R 3.0 2 0

SCI628105 Robot from future trying to change the future.
del FAN121610
add Dragon Slayer Robbins 1981 R Richardson G 3.5 2 1

FAN121610 Whoever produced this movie should be Walt Disney's son.
sort Title
del FAN121619
add Forbidden Planet FM Wilcox 1956 L Neilsen & W Pidgeon G 3.0 1 0

SCI408731 This movie overall was quite good for early Sci-Fi.
add Fright Night T Holland 1985 R McDowell & C Sarandon PG13 3.0 1 1

HOR010232 This movie overall was modern fright.
add GoodBye Girl Herbert Ross 1977 R Dreyfuss & M Mason G 2.5 2 0

COM319631 This movie overall was the best movie of the year.
sort Serial
del COM319631
add GoodBye Girl Herb Ross 1977 R Dreyfuss & M Mason G 3.0 2 0

COM319631 This movie was the best film of 1977.
sort Title
dump

Output description and sample:

Your program must write its output data to a file named dbase.list — use of any other output file name will result in a
runtime testing score of zero. Here is an output file corresponding to the given sample input files:

Programmer: Dwight Barnette
Statistical Appraisal Movie System

Title Director Release Performers Rating Stars Stock Rental Serial
Alien Cameron 1978 Sigourney Weaver PG13 4.0 3 0 SCI010121
Blade Runner R Scott 1982 H Ford, R Hauer R 3.0 2 0 SCI216193
Dragon Slayer Robbins 1981 R Richardson G 3.5 2 1 FAN121610
Forbidden Planet FM Wilcox 1956 L Neilsen & W Pidgeon G 3.0 1 0 SCI408731
Fright Night T Holland 1985 R McDowell & C Sarandon PG13 3.0 1 1 HOR010232
GoodBye Girl Herb Ross 1977 R Dreyfuss & M Mason G 3.0 2 0 COM319631
Predator Unknown 1988 Arnie R 3.0 1 1 SCI482617
Star Wars G Lucas 1976 Hamill, Ford, Fisher G 5.0 5 2 SCI328412
Terminator Cameron 0 Arnie, Linda Hamilton R 3.0 2 0 SCI628105

The first line of your output must include your name only. The second line must include the title “Statistical
Appraisal Movie System” only. The third line must be a line of underscore characters; the fourth line must display
the column labels shown above. The fifth line will contain movie data echoed from the current database, aligned under the
appropriate headers. The last line must be a line of underscore characters. Each listing must be terminated by a line of
underscore characters. The column field headings should be repeated for each movie listing resulting from a dump.
However the three lines (programmer, program title and underscore lines) are not to be repeated.

You are not required to use the exact horizontal spacing shown in the example above, but your output must satisfy the
following requirements:

! You must use the specified header and column labels, and print a row of delimiters before and after the table
body, as shown.

! You must arrange your output in neatly aligned columns. Use spaces, not tabs to align your output.
! You must use the same ordering of the columns as shown here, and print the Stars field with precision one.

CS 1704 Project 0 Fall 2000

Due: midnight on Friday, September 8 Page 4 of 5

Programming Standards:

You'll be expected to observe good programming/documentation standards. All the discussions in class, in the course notes
and on the course Web site about formatting, structure, and commenting your code should be followed. Some specifics:

Documentation:
! You must include the honor pledge in your program header comment, (see below).
! You must include a header comment that describes what your program does and specifying any constraints or

assumptions of which a user should be aware, (such as preset file names, value ranges, etc.).
! You must include a comment explaining the purpose of every variable or named constant you use in your program.
! You must use meaningful identifier names suggesting the meaning/purpose of the constant, variable, function, etc.
! Precede every major block of your code with a comment explaining its purpose.
! Precede every function you write with a header comment. This should explain in one sentence what the function

does, then describe the logical purpose of each parameter (if any), describe the return value (if any), and state
reasonable pre- and post-conditions and invariants.

! Use the assert function to check for error conditions and verify function pre- and post-conditions whenever
possible.

! You must use indentation and blank lines to make control structures like loops and if-else statements more
readable.

You are also required to conform to the coding requirements specified below.

Coding:
! Implement your solution without any user-defined classes.
! Implement your solution in a single source file, with no user-defined header files. (This restriction is for ease of

testing and evaluation.)
! Use named constants instead of variables where appropriate.
! Use double variables for all decimal numbers.
! Use an array of structure variables to store the movie data.
! Use C++ string objects, not C-style char arrays to store character strings, (aside from string literals).
! Declare and make appropriate use of an enumerated type in your program.
! You must make good use of user-defined functions in your design and implementation. To encourage this, the

body of main() must contain no more than 20 executable statements and the bodies of the other functions you
write must each contain no more than 40 executable statements. An executable statement is any statement other
than a constant or variable declaration, function prototype or comment. Blank lines do not count.

! You must write at least ten functions, besides main().
! The definition of main() must be the first function definition in your source file. You may use file-scoped

function prototypes and you may use file-scoped constants. You may also make the typedef statement for your
structured variable type file-scoped (in fact you must do this).

! You may not use file-scoped variables of any kind.
! Function parameters should be passed appropriately. Use pass-by-reference only when the called function needs to

modify the parameter. Pass array parameters by constant reference (using const) when pass-by-reference is not
needed.

Design:
An initial structure chart design of the program is NOT required. However, students may wish to go ahead and produce a
structure chart design as all other projects will require structure chart designs and will build off of this project. If a design is
produced it is not to be submitted in any manner for evaluation or documentation.

CS 1704 Project 0 Fall 2000

Due: midnight on Friday, September 8 Page 5 of 5

Testing:
Obviously, you should be certain that your program produces the output given above when you use the given input files.
However, verifying that your program produces correct results on a single test case does not constitute a satisfactory testing
regimen.

At minimum, you should test your program on all the posted input/output examples. The same program that will be used to
test your solution generated those input/output examples. You could make up and try additional input files as well; of
course, you'll have to determine by hand what the correct output would be.

Submitting your solution:
You will submit your source code electronically, as described here. SAMS will be subjected to runtime testing by the
Curator automated grading system and also scored by the TAs for adherence to the specified programming standards. The
relative weights of the two scores will be announced. You will be allowed to make up to five submissions of SAMS to the
Curator.

Instructions for submitting your program are available in the Student Guide at the EAGS Homepage:
http://ei.cs.vt.edu/~eags/Curator.html

Read the instructions carefully.

Note well: your submission that receives the highest score will be graded for adherence to these requirements, whether it is
your last submission or not. If two or more of your submissions are tied for highest, the earliest of those will be graded.
Therefore: implement and comment your C++ source code with these requirements in mind from the beginning rather than
planning to clean up and add comments later.

Pledge:
Each of your project submissions to the EAGS must be pledged to conform to the Honor Code requirements for this course.
Specifically, you must include the following pledge statement in the header comment for your program:

// On my honor:
//
// - I have not discussed the C++ language code in my program with
// anyone other than my instructor or the teaching assistants
// assigned to this course.
//
// - I have not used C++ language code obtained from another student,
// or any other unauthorized source, either modified or unmodified.
//
// - If any C++ language code or documentation used in my program
// was obtained from another source, such as a text book or course
// notes, that has been clearly noted with a proper citation in
// the comments of my program.
//
// - I have not designed this program in such a way as to defeat or
// interfere with the normal operation of the Curator Server.

Failure to include this pledge in a submission is a violation of the Honor Code.

http://ei.cs.vt.edu/~eags/Curator.html

	Initial Movie File

