
CS 1124 Media
computation

Lecture 9.2 October 22, 2008
Steve Harrison

A Mind Bending Lecture
on our way to Java

Today

Strings

dot.notation

and a little bit more about lists...

A jump into hyperspace

Today

Strings

dot.notation

and a little bit more about lists...

A jump into hyperspace

Dot notation

All data in Python are actually objects
Objects not only store data, but they respond to special

functions that only objects of the same type
understand.

We call these special functions methods
Methods are functions known only to certain objects

To execute a method, you use dot notation
objectName.method()

MORE ABOUT THIS LATER !

Capitalize is a method known only to
strings
>>> test="this is a test."
>>> print test.capitalize # without the ()s a method

will not execute
<built-in method 'capitalize'>
>>> print test.capitalize()
This is a test.
>>> print capitalize(test)
A local or global name could not be found.
NameError: capitalize
>>> print 'this is another test'.capitalize()
This is another test
>>> print 12.capitalize()
A syntax error is contained in the code -- I can't

read it as Python.
Why?

Strings are sequences
>>> for i in "Hello":
... print i
...
H
e
l
l
o

Useful string methods (1)

 strObject.startswith(prefix) returns true if the string starts
with the given prefix

 strObject.endswith(suffix) returns true if the string ends
with the given suffix

Want to test how a string starts?
>>> letter = "Mr. Steve Harrison requests
the pleasure of your company..."

>>> print letter.startswith("Mr.")
1
>>> print letter.startswith("Mrs.")
0

Remember that Python sees “0” as false
and
anything else (including “1”) as true

Or how it ends?
>>> filename="barbara.jpg"
>>> if filename.endswith(".jpg"):
... print "It's a picture"
...
It's a picture
>>> file = "srh@cs.vt.edu"
>>> if file.endswith(".edu"):
... print "looks like a school
email address."

...
looks like a school email address.

Useful string methods (2)

 strObject.find(pattern) and
strObject.find(pattern, start) and
strObject.find(pattern, start, end) finds the pattern in the
string object and returns the index where the pattern starts.
You can tell it what index number to start from, and even
where to stop looking. It returns -1 if it fails.

 strObject.rfind(pattern) (and variations) searches from the
end of the string.

Remember that Python sees “0” as false
and
anything else (including “1”) as true

But strObject.find() returns -1 when false --
that is, can’t find string in strObject

Demonstrating find
>>> print letter
Mr. Steve Harrison requests the pleasure of your

company...
>>> print letter.find("Steve")
4
>>> print letter.find("Harrison")
10
>>> print len("Harrison")
8
>>> print letter[4:(4+6)+8]
Steve Harrison
>>> print letter.find("fred")
-1

Replace method
>>> print letter
Mr. Steve Harrison requests the pleasure of your

company...
>>> letter.replace("a", "!")
'Mr. Steve H!rrison requests the ple!sure of your comp!

ny...'
>>> print letter
Mr. Steve Harrison requests the pleasure of your

company...

N.B. The string that is stored in letter did not
change. The replace method creates a new string with
the replacement having happened. Store that if you
want the string in letter to change.

letter = letter.replace("S", "s")

Today

Strings

dot.notation

and a little bit more about lists...

A jump into hyperspace

Converting from strings to lists
>>> print letter.split(" ")
['Mr.', 'Steve', 'Harrison', 'requests',
'the', 'pleasure', 'of', 'your',
'company...']

N.B. this split is splitting on a space.
You can split on other characters too!

Talk like a computer
scientist

>>> print letter.split(" ")
['Mr.', 'Steve', 'Harrison', 'requests',
'the', 'pleasure', 'of', 'your',
'company...']

Cutting up a string into parts like this is called
“parsing” or “tokenizing”. This is useful since it
gives structure where there was none.

Even thought they mean slightly different things,
computer scientists often use “parse” and tokenize
in casual conversation as a synonym for
“understand”. For example, they will say “I can’t
parse what you are saying.”

Lists

We’ve seen lists before—that’s what range() returns.
Lists are very powerful structures.

Lists can contain strings, numbers, even other lists.
They work very much like strings

You get pieces out with []
You can “add” lists together
You can use for loops on them

We can use them to process a variety of kinds of data.

Demonstrating lists
>>> mylist = ["This", "is", "a", 12]
>>> print mylist
['This', 'is', 'a', 12]
>>> print mylist[0]
This
>>> for i in mylist:
... print i
...
This
is
a
12
>>> print mylist + ["Really!"]
['This', 'is', 'a', 12, 'Really!']

N.B. Again assign that back into mylist to update mylist's
value!

>>> mylist = mylist + ["Really!"]

Whoa! Lists can have different
kinds of objects in them.

Useful methods to use with lists:
But these don’t work with strings
 append(something) puts something in the list at the end.
 remove(something) removes something from the list, if it’s

there.
 sort() puts the list in alphabetical order
 reverse() reverses the list
 count(something) tells you the number of times that

something is in the list.
 max() and min() are functions that take a list as input and

give you the maximum and minimum value in the list.

Today

Strings

dot.notation

and a little bit more about lists...

A jump into hyperspace

Question:

Give a definition of “time”
Can a function call itself?

20

A very powerful idea: Recursion

Recursion is writing functions that call themselves.
When you write a recursive function, you write (at

least) two pieces:
What to do if the input is the smallest possible datum,
What to do if the input is larger so that you:

(a) process one piece of the data
(b) call the function to deal with the rest.

SEE CHAPTER 14 FOR MORE ON RECURSION

First, a reminder of lists

>>> fred=[1,2,3,4,5]
>>> fred[0]
1
>>> fred[1:]
[2, 3, 4, 5]
 In functional programming languages, there are usually

functions called head and rest for these two operations.
 They’re very common in recursion.

>>> print fred[:-1]
[1, 2, 3, 4]

A recursive decreaseRed

def decreaseRed(alist):
 if alist == []: #Empty
 return
 setRed(alist[0],

getRed(alist[0])*0.8)
 decreaseRed(alist[1:])

 If the list (of pixels) is
empty, don’t do anything.
 Just return

 Otherwise,
 Decrease the red in the first

pixel.
 Call decreaseRed on the

rest of the pixels.

 Call it like:
decreaseRed(getPixels(pic)
)

This actually won’t work
for reasonable-sized
pictures—takes up too
much memory in Java.

Recursion can be hard to get your
head around
It really relies on you trusting your functions.

They’ll do what you tell them to do.
So if a function decreases red on a list of pixels, just

let it do that!

Let’s try some different ways to think about
recursion.

But first, let’s take a smaller problem.

DownUp
 Let’s define a function called downUp
>>> downUp("Hello")
Hello
ello
llo
lo
o
lo
llo
ello
Hello

3 ways to understand recursion

1. Procedural abstraction
2. Trace it out (use a small problem like downUp to

do this)
3. Little people method

1. Procedural abstraction

Break the problem down into the smallest pieces
that you can write down easily as a function.

Re-use as much as possible.

downUp for one character words

def downUp1(word):
 print word
Obviously, this works:
>>> downUp1("I")
I

downUp for 2 character words
 We’ll reuse downUp1 since we have it already.
def downUp2(word):
 print word
 downUp1(word[1:])
 print word
>>> downUp2("it")
it
t
it
>>> downUp2("me")
me
e
me

downUp3 for 3 character words
def downUp3(word):
 print word
 downUp2(word[1:])
 print word
>>> downUp3("pop")
pop
op
p
op
pop
>>> downUp3("top")
top
op
p
op
top

Are we seeing a
pattern yet?

Let’s try our pattern

def downUpTest(word):
 print word
 downUpTest(word[1:])
 print word

It starts right!
>>> downUpTest("hello")
hello
ello
llo
lo
o
I wasn't able to do what you wanted.
The error java.lang.StackOverflowError has occured
Please check line 58 of C:\Documents and Settings\Mark Guzdial\My

Documents\funcplay.py

A function can get called so much
that the memory set aside for
tracking the functions (called the
stack) runs out, called a stack
overflow.

How do we stop?
 If we have only one

character in the word,
print it and STOP!

def downUp(word):
 if len(word)==1:
 print word
 return
 print word
 downUp(word[1:])
 print word

or

def downUp(word):
 print word
 if len(word)==1:
 return
 downUp(word[1:])
 print word

or

def downUp(word):
 print word
 if len(word)>1:
 downUp(word[1:])
 print word

That works
>>> downUp("Hello")
Hello
ello
llo
lo
o
lo
llo
ello
Hello

2. Let’s trace what happens

>>> downUp("Hello")
The len(word) is not 1, so we print the word

Hello
Now we call downUp(“ello”)
Still not one character, so print it

ello
Now we call downUp(“llo”)
Still not one character, so print it

llo

Still tracing
downUp(“lo”)
Still not one character, so print it

lo
Now call downUp(“o”)
THAT’S ONE CHARACTER! PRINT IT AND RETURN!

o

On the way back out
 downUp(“lo”) now continues from its call to downUp(“o”), so it

prints again and ends.
 lo

 downUp(“llo”) now continues (back from downUp(“lo”))
 It prints and ends.

 llo
 downUp(“ello”) now continues.
 It prints and ends.

 ello
 Finally, the last line of the original downUp(“Hello”) can run.

 Hello

3. Little elves

Some of the concepts that are hard to understand:
A function can be running multiple times and places in

memory, with different input.
When one of these functions end, the rest still keep

running.

A great way of understanding this is to use the
metaphor of a function call (a function invocation)
as an elf.
(We’ll use students in the class as elves.)

Elf instructions:

1. Accept a word as input.
2. If your word has only one character in it, write it on the

screen and you’re done! Stop and sit down.
3. Write your word down on the “screen”
4. Hire another elf to do these same instructions and give the

new elf your word minus the first character.
1. Wait until the elf you hired is done.

5. Write your word down on the “screen” again.
6. You’re done!

Exercises
 Try writing upDown
>>> upDown("Hello")
Hello
Hell
Hel
He
H
He
Hel
Hell
Hello

Why use functional programming and
recursion?
Can do a lot in very few lines.
Very useful techniques for dealing with hard

problems.
ANY kind of loop (FOR, WHILE, and many others)

can be implemented with recursion.
It’s the most flexible and powerful form of looping.

Factorial -- the classic recursive
function

def factorial(number) :
 if number == 1 :
 return number
 else :
 return number * factorial(number - 1.0)

42

Coming attractions

Friday:

Group project 2 - Sound Abstraction due 2:00 PM

bring to Lab to demo!

Trick or Treat !

Early Warning - next midterm Friday 10/31

