
CS 1124 Media
computation

Lecture 9.1, October 20, 2008
Steve Harrison

Where were we?

Backwards (in 3 ways)
Strings

Where were we?

Backwards (in 3 ways)
Strings

Backwards (1)

 Reverse the samples:
 recipe 60

def backwards(fileName) :
 source = makeSound(fileName)
 target = makeSound(fileName)
 sourceIndex = getLength(source)
 targetLength = sourceIndex + 1
 for targetIndex in range(1, targetLength):
 sourceValue = getSampleValueAt(source, sourceIndex)
 setSampleValueAt(target, targetIndex, sourceValue)
 sourceIndex = sourceIndex - 1
 return target

Backwards (2): mirror

 Reverse the samples:
 recipe 61
 same algorithm as recipe 19 (pictures)

def mirror(sound) :
 mirrorPoint = getLength(sound) / 2

 for sampleOffset in range(1, mirrorPoint - 1):
sampleLater = getSampleObjectAt(sound, mirrorPoint+sampleOffset)
sampleBefore = getSampleObjectAt(sound, mirrorPoint-
sampleOffset)
value = getSample(sampleBefore)
setSample(sampleLater, value)

 return sound

Backwards (3): mirror using
separate functions
 What are some pieces we can learn from:

 Algorithms from 60 & 61

 What parts do we want to re-use to make this
recipe of recipes from?
 60 takes a filename, returns a sound
 61 takes a sound, (our version) returns a sound

 What are some ways we can think of using
backwards sounds?
 create backwards sounds from anywhere in a sound
 put backwards sound anywhere in new sound

Backwards (3):
backwardsSection(....)
def backwardsSection(source, takeFrom, length, target, putTo) :
this is our general purpose function

sourceIndex = min(takeFrom + length, getLength(source))
targetLength = min(putTo + length, getLength(target))

loop through forward through the target and backwards through the source
for targetIndex in range(putTo, targetLength):

sourceValue = getSampleValueAt(source, sourceIndex)
setSampleValueAt(target, targetIndex, sourceValue)
sourceIndex = sourceIndex - 1
if sourceIndex < 1 :
 return target

return target

def min(param1, param2) :
returns the lessor of two parameters

if param1 < param2 :
return param1

else :
return param2

Backwards (3):
recipe 60 & 61 revisited
def backwards(filename) :
the equivalent of recipe 60

 source = makeSound(filename)
 target = makeSound(filename)
 sourceLength = getLength(source)
 return backwardsSection(source, 1, sourceLength, target, 1)

def mirror(sound) :
the equivalent of recipe 61

 sourceLength = getLength(sound)
 return backwardsSection(sound, 1, sourceLength/2, sound, (sourceLength/2) + 1)

def mirrorFile(filename) :
same as mirror, but uses filename

 source = makeSound(filename)
 target = makeSound(filename)
 sourceLength = getLength(source)
 return backwardsSection(source, 1, sourceLength/2, target, (sourceLength/2) + 1)

def revMirror(sound) :
like mirror except the first half is reversed and second half is forward
equivalent to mirror(backwards())

 sourceLength = getLength(sound)
 return backwardsSection(sound, (sourceLength/2) + 1, sourceLength/2, sound, 1)

Backwards (3):
chop sound, reverse alternates
def revFragments(source, numOfFragments) :
chops sound into numOfFragments, reverse every other one

 target = makeEmptySound(getLength(source), int(getSamplingRate(source)))
 sourceLength = getLength(source)
 fragLength = sourceLength / numOfFragments
 start = 1

step for every other fragment
 for count in range(1, numOfFragments + 1, 2) :

 target = backwardsSection(source, start, fragLength, target, start)
 start = start + (fragLength * 2)

 return target

Where were we?

Backwards (in 3 ways)
Strings

Strings &Text

Strings

using strings to write HTML

New programming syntax and
concepts
Up until now, we’ve had a small set of

programming elements we’ve worked with:
Assignment, print, for (with and without range()), if

We’re halfway through the class, so we’re going to
start pulling back the curtains a little and show
what’s behind the scenes

Text

Text is the universal medium
We can convert any other media to a text

representation.
We can convert between media formats using text.
Text is simple.

Text is usually processed in an array—a long line
of characters

We refer to one of these long line of characters as a
string.

Strings
 Strings are defined with quote marks.
 Python actually supports three kinds of quotes:

>>> print 'this is a string'
this is a string
>>> print "this is a string"
this is a string
>>> print """this is a string"""
this is a string

 Use the right one that allows you to embed quote marks if you want
>>> phrase = "Monica's cat."
>>> print phrase
Monica's cat.

Why would you want to use triple
quotes?
To have long quotations

with returns and such
inside them.

>>> print aLongString()
This is a
long
string
>>>

def aLongString():
 return """This
is a
long
string"""

Encodings for strings

Strings are just arrays of characters
In most cases, characters are just single bytes.

The ASCII encoding standard maps between single
byte values and the corresponding characters

More recently, characters are two bytes.
Unicode uses two bytes per characters so that there

are encodings for glyphs (characters) of other
languages

Java uses Unicode. The version of Python we are
using is based in Java, so our strings are actually using
Unicode.

There are more characters than we
can type
Our keyboards don’t have all the characters

available to us, and it’s hard to type others into
strings.
Backspace?
Return?

? ±
We use backslash escapes to get other special

characters

Backslash escapes

“\b” is backspace
“\n” is a newline (like pressing the Enter key)
“\t” is a tab
“\uXXXX” is a Unicode character, where XXXX is

a code and each X can be 0-9 or A-F.
http://www.unicode.org/charts/
Must precede the string with “u” for Unicode to work

Testing strings
>>> print "hello\tthere\nMark"
hello there
Mark
>>> print u"\uFEED"
و
>>> print u"\u03F0"
ϰ
>>> print "Thix\bs is\na\btest"

Manipulating strings

We can add strings and get their lengths using the
kinds of programming features we’ve seen
previously.
>>> helloStr = "Hello"
>>> print len(helloStr)
5
>>> markStr = ", Mark" <---- has a space after the comma
>>> print len(markStr)
6
>>> print helloStr + markStr
Hello, Mark
>>> print len(helloStr + markStr)
11

Getting parts of strings

We use the square bracket “[]” notation to get parts
of strings.

stringVariable[n] gives you the nth character in the
string (but keep in mind the first one is the zero-ith)

string[n:m] gives you the characters indexed by n
through (but not including) index m.

Getting parts of strings
>>> helloStr = "Hello"
>>> print helloStr[1]
e
>>> print helloStr[0]
H
>>> print helloStr[2:4]
ll

H e l l o

0 1 2 3 4

Start and end indices are assumed if
not there
>>> print helloStr
Hello
>>> print helloStr[:4]
Hell
>>> print helloStr[3:]
lo
>>> print helloStr[:]
Hello

Where were we?

Backwards (in 3 ways)
Strings

HW 7

Debug some code

Due next Wednesday @ 10:00 AM

Coming attractions

Wednesday:

HW 6 due 10:00 AM

Friday:

Group Project due 2:00 PM

Next Monday:

read Chapter 10 & 11 through section 11.3

Quiz due 10:00 AM

