
CS 1124 Media
computation

Lecture 9.1, October 20, 2008
Steve Harrison

Where were we?

Backwards (in 3 ways)
Strings

Where were we?

Backwards (in 3 ways)
Strings

Backwards (1)

 Reverse the samples:
 recipe 60

def backwards(fileName) :
 source = makeSound(fileName)
 target = makeSound(fileName)
 sourceIndex = getLength(source)
 targetLength = sourceIndex + 1
 for targetIndex in range(1, targetLength):
 sourceValue = getSampleValueAt(source, sourceIndex)
 setSampleValueAt(target, targetIndex, sourceValue)
 sourceIndex = sourceIndex - 1
 return target

Backwards (2): mirror

 Reverse the samples:
 recipe 61
 same algorithm as recipe 19 (pictures)

def mirror(sound) :
 mirrorPoint = getLength(sound) / 2

 for sampleOffset in range(1, mirrorPoint - 1):
sampleLater = getSampleObjectAt(sound, mirrorPoint+sampleOffset)
sampleBefore = getSampleObjectAt(sound, mirrorPoint-
sampleOffset)
value = getSample(sampleBefore)
setSample(sampleLater, value)

 return sound

Backwards (3): mirror using
separate functions
 What are some pieces we can learn from:

 Algorithms from 60 & 61

 What parts do we want to re-use to make this
recipe of recipes from?
 60 takes a filename, returns a sound
 61 takes a sound, (our version) returns a sound

 What are some ways we can think of using
backwards sounds?
 create backwards sounds from anywhere in a sound
 put backwards sound anywhere in new sound

Backwards (3):
backwardsSection(....)
def backwardsSection(source, takeFrom, length, target, putTo) :
this is our general purpose function

sourceIndex = min(takeFrom + length, getLength(source))
targetLength = min(putTo + length, getLength(target))

loop through forward through the target and backwards through the source
for targetIndex in range(putTo, targetLength):

sourceValue = getSampleValueAt(source, sourceIndex)
setSampleValueAt(target, targetIndex, sourceValue)
sourceIndex = sourceIndex - 1
if sourceIndex < 1 :
 return target

return target

def min(param1, param2) :
returns the lessor of two parameters

if param1 < param2 :
return param1

else :
return param2

Backwards (3):
recipe 60 & 61 revisited
def backwards(filename) :
the equivalent of recipe 60

 source = makeSound(filename)
 target = makeSound(filename)
 sourceLength = getLength(source)
 return backwardsSection(source, 1, sourceLength, target, 1)

def mirror(sound) :
the equivalent of recipe 61

 sourceLength = getLength(sound)
 return backwardsSection(sound, 1, sourceLength/2, sound, (sourceLength/2) + 1)

def mirrorFile(filename) :
same as mirror, but uses filename

 source = makeSound(filename)
 target = makeSound(filename)
 sourceLength = getLength(source)
 return backwardsSection(source, 1, sourceLength/2, target, (sourceLength/2) + 1)

def revMirror(sound) :
like mirror except the first half is reversed and second half is forward
equivalent to mirror(backwards())

 sourceLength = getLength(sound)
 return backwardsSection(sound, (sourceLength/2) + 1, sourceLength/2, sound, 1)

Backwards (3):
chop sound, reverse alternates
def revFragments(source, numOfFragments) :
chops sound into numOfFragments, reverse every other one

 target = makeEmptySound(getLength(source), int(getSamplingRate(source)))
 sourceLength = getLength(source)
 fragLength = sourceLength / numOfFragments
 start = 1

step for every other fragment
 for count in range(1, numOfFragments + 1, 2) :

 target = backwardsSection(source, start, fragLength, target, start)
 start = start + (fragLength * 2)

 return target

Where were we?

Backwards (in 3 ways)
Strings

Strings &Text

Strings

using strings to write HTML

New programming syntax and
concepts
Up until now, we’ve had a small set of

programming elements we’ve worked with:
Assignment, print, for (with and without range()), if

We’re halfway through the class, so we’re going to
start pulling back the curtains a little and show
what’s behind the scenes

Text

Text is the universal medium
We can convert any other media to a text

representation.
We can convert between media formats using text.
Text is simple.

Text is usually processed in an array—a long line
of characters

We refer to one of these long line of characters as a
string.

Strings
 Strings are defined with quote marks.
 Python actually supports three kinds of quotes:

>>> print 'this is a string'
this is a string
>>> print "this is a string"
this is a string
>>> print """this is a string"""
this is a string

 Use the right one that allows you to embed quote marks if you want
>>> phrase = "Monica's cat."
>>> print phrase
Monica's cat.

Why would you want to use triple
quotes?
To have long quotations

with returns and such
inside them.

>>> print aLongString()
This is a
long
string
>>>

def aLongString():
 return """This
is a
long
string"""

Encodings for strings

Strings are just arrays of characters
In most cases, characters are just single bytes.

The ASCII encoding standard maps between single
byte values and the corresponding characters

More recently, characters are two bytes.
Unicode uses two bytes per characters so that there

are encodings for glyphs (characters) of other
languages

Java uses Unicode. The version of Python we are
using is based in Java, so our strings are actually using
Unicode.

There are more characters than we
can type
Our keyboards don’t have all the characters

available to us, and it’s hard to type others into
strings.
Backspace?
Return?

? ±
We use backslash escapes to get other special

characters

Backslash escapes

“\b” is backspace
“\n” is a newline (like pressing the Enter key)
“\t” is a tab
“\uXXXX” is a Unicode character, where XXXX is

a code and each X can be 0-9 or A-F.
http://www.unicode.org/charts/
Must precede the string with “u” for Unicode to work

Testing strings
>>> print "hello\tthere\nMark"
hello there
Mark
>>> print u"\uFEED"
و
>>> print u"\u03F0"
ϰ
>>> print "Thix\bs is\na\btest"

Manipulating strings

We can add strings and get their lengths using the
kinds of programming features we’ve seen
previously.
>>> helloStr = "Hello"
>>> print len(helloStr)
5
>>> markStr = ", Mark" <---- has a space after the comma
>>> print len(markStr)
6
>>> print helloStr + markStr
Hello, Mark
>>> print len(helloStr + markStr)
11

Getting parts of strings

We use the square bracket “[]” notation to get parts
of strings.

stringVariable[n] gives you the nth character in the
string (but keep in mind the first one is the zero-ith)

string[n:m] gives you the characters indexed by n
through (but not including) index m.

Getting parts of strings
>>> helloStr = "Hello"
>>> print helloStr[1]
e
>>> print helloStr[0]
H
>>> print helloStr[2:4]
ll

H e l l o

0 1 2 3 4

Start and end indices are assumed if
not there
>>> print helloStr
Hello
>>> print helloStr[:4]
Hell
>>> print helloStr[3:]
lo
>>> print helloStr[:]
Hello

Where were we?

Backwards (in 3 ways)
Strings

HW 7

Debug some code

Due next Wednesday @ 10:00 AM

Coming attractions

Wednesday:

HW 6 due 10:00 AM

Friday:

Group Project due 2:00 PM

Next Monday:

read Chapter 10 & 11 through section 11.3

Quiz due 10:00 AM

