

WHERE WERE WE?

Backwards (in 3 ways)

Strings

WHERE WERE WE?

Backwards (in 3 ways)

Strings

Backwards (1)

B Reverse the samples:

recipe 60
def backwards(fileName) :

source = makeSound(fileName)

target = makeSound(fileName)

sourcelndex = getl.ength(source)

targetLength = sourcelndex + 1

for targetIndex in range(1, targetLength):
source Value = getSampleValueAt(source, sourcelndex)
setSampleValueAt(target, targetIndex, sourceValue)
sourcelndex = sourcelndex - 1

return target

Backwards (2): mirror

B Reverse the samples:
recipe 61

same algorithm as recipe 19 (pictures)
def mirror(sound) :
mirrorPoint = getLLength(sound) / 2

for sampleOffset in range(1, mirrorPoint - 1):
sampleLater = getSampleObjectAt(sound, mirrorPoint+sampleOffset)
sampleBefore = getSampleObjectAt(sound, mirrorPoint-
sampleOffset)
value = getSample(sampleBefore)
setSample(sampleLater, value)

return sound

Backwards (3): mirror using

separate functions

® What are some pieces we can learn from:
Algorithms from 60 & 61

® What parts do we want to re-use to make this
recipe of recipes from?
60 takes a filename, returns a sound

61 takes a sound, (our version) returns a sound
B What are some ways we can think of using
backwards sounds?

create backwards sounds from anywhere in a sound

put backwards sound anywhere in new sound

Backwards (3):
backwardsSection(....)

def backwardsSection(source, takeFrom, length, target, putTo) :
this is our general purpose function
sourcelndex = min(takeFrom + length, getLength(source))
targetLength = min(putTo + length, getLength(target))

loop through forward through the target and backwards through the source
for targetlndex in range(putTo, targetLength):
sourceValue = getSampleValueAt(source, sourcelndex)
setSampleValueAt(target, targetIndex, sourceValue)
sourcelndex = sourcelndex - 1
if sourcelndex <1 :
return target

return target

def min(paraml, param?2) :
returns the lessor of two parameters
if paraml < param?2 :
return paraml
else :
return param2

Backwards (3):
recipe 60 & 61 revisited

def backwards(filename) :
the equivalent of recipe 60
source = makeSound(filename)
target = makeSound(filename)
sourceLength = getl.ength(source)
return backwardsSection(source, 1, sourceLength, target, 1)

def mirror(sound) :
the equivalent of recipe 61
sourceLength = getl.ength(sound)
return backwardsSection(sound, 1, sourceL.ength/2, sound, (sourceLength/2) + 1)

def mirrorFile(filename) :
same as mirror, but uses filename
source = makeSound(filename)
target = makeSound(filename)
sourceLength = getl.ength(source)
return backwardsSection(source, 1, sourceLength/2, target, (sourceLength/2) +1)

def revMirror(sound) :
like mirror except the first half is reversed and second half is forward
equivalent to mirror(backwards())
sourceLength = getLength(sound)
return backwardsSection(sound, (sourceLength/2) + 1, sourceL.ength/2, sound, 1)

Backwards (3):
chop sound, reverse alternates

def revFragments(source, numOfFragments) :
chops sound into numOfFragments, reverse every other one
target = makeEmptySound(getLength(source), int(getSamplingRate(source)))
sourceLength = getl.ength(source)
fragl.ength = sourceLength / numOfFragments
start =1

step for every other fragment
for count in range(1, numOfFragments +1,2):
target = backwardsSection(source, start, fragl.ength, target, start)
start = start + (fragLength * 2)

return target

WHERE WERE WE?

Backwards (in 3 ways)

Strings

© Strings

® using strings to write HTML

|~ ——

New programming syntax and
concepts

B Up until now, we’ve had a small set of
programming elements we’ve worked with:

Assignment, print, for (with and without range()), if

B We’'re halfway through the class, so we’re going to
start pulling back the curtains a little and show
what’s behind the scenes

|~

Text

B Text 1s the universal medium

We can convert any other media to a text
representation.

We can convert between media formats using text.
Text is simple.

B Text 1s usually processed in an array—a long line
of characters

B We refer to one of these long line of characters as a
string.

|~ —

Strings

m Strings are defined with quote marks.

® Python actually supports three kinds of quotes:
>>> print 'this is a string’
this is a string
>>> print "this is a string”
this is a string
>>> print ""this is a string™"
this is a string

m Use the right one that allows you to embed quote marks if you want
>>> phrase = "Monica's cat.”
>>> print phrase

Monica's cat.

|~

Why would you want to use triple

quotes?

B To have long quotations
with returns and such
inside them.

>>> print aLongString ()

This is a

long

string

>>>

def alongString() :
return """This

is a

long

String wiww

|~ ——

Encodings for strings

B Strings are just arrays of characters
B [n most cases, characters are just single bytes.

The ASCII encoding standard maps between single
byte values and the corresponding characters

® More recently, characters are two bytes.

Unicode uses two bytes per characters so that there
are encodings for glyphs (characters) of other
languages

Java uses Unicode. The version of Python we are
using is based in Java, so our strings are actually using
Unicode.

|~

There are more characters than we
can type

B Our keyboards don’t have all the characters
available to us, and 1t’s hard to type others 1nto
strings.

Backspace?
Return?

?+

B We use backslash escapes to get other special
characters

|~

Backslash escapes

B“\b” 15 backspace
®\n” 1s a newline (like pressing the Enter key)
m\t” 1s a tab

B \uXXXX” 1s a Unicode character, where XXXX 1s
a code and each X can be 0-9 or A-F.

http://www.unicode.org/charts/

Must precede the string with “u” for Unicode to work

|~ —

Testing strings

>>> print "hello\tthere\nMark"
hello there

Mark

>>> print u"\uFEED"

L)

>>> print u"\uO3F0"

X

>>> print "Thix\bs is\nal\btest"

|~

Manipulating strings

B We can add strings and get their lengths using the
kinds of programming features we’ve seen

previously.
>>> helloStr = "Hello"
>>> print len(helloStr)
5
>>> markStr = ", Mark" <---- has a space after the comma
>>> print len (markStr)
6

>>> print helloStr + markStr
Hello, Mark

>>> print len(helloStr + markStr)
11

|~

Getting parts of strings

B We use the square bracket “[]” notation to get parts
of strings.

mstring Variable[n] gives you the n character in the
string (but keep 1n mind the first one is the zero-ith)

Bstring[n:m] gives you the characters indexed by n
through (but not including) index m.

|~ —

Getting parts of strings

>>> helloStr = "Hello"

>>> print helloStr([1] H e

e
>>> print helloStr|[O0]

H

>>> print helloStr[2:4]
11

|~

Start and end indices are assumed if

not there
>>> print helloStr

Hello

>>> print helloStr[:4]
Hell

>>> print helloStr([3:]
lo

>>> print helloStr|[:]
Hello

WHERE WERE WE?

Backwards (in 3 ways)

Strings

HW 7

Debug some code

Due next Wednesday @ 10:00 AM

COMING ATTRACTIONS

Wednesday:
HW 6 due 10:00 AM
Friday:
Group Project due 2:00 PM
Next Monday:
read Chapter 10 & 11 through section 11.3
Quiz due 10:00 AM

