
CS 2984 Media
computation

Lecture 8.2, October 15, 2008
Steve Harrison

Today

Fast Talking (from last time)

Sound Abstraction presentations

How to design and debug a program: Using
background subtraction and chromakey as topics.

Top-down

Bottom-up

debugging (1)

Today

Fast Talking (from last time)

Sound Abstraction presentations

How to design and debug a program: Using
background subtraction and chromakey as topics.

Top-down

Bottom-up

debugging (1)

Fast talking
 not in book
def fastTalk(sound, thresholdAmplitude,
thresholdDuration) :
 # this skips pauses between words
 sampleRate = getSamplingRate(sound)
 soundLen = getLength(sound)
 target = makeEmptySound(soundLen,
int(sampleRate))
 thresholdCount = int(sampleRate *
thresholdDuration)
 targetIndex = 1
 count = 0
 targetJumpBackTo = 1

 for sourceIndex in range(1, soundLen + 1) :
 sampleValue = getSampleValueAt(sound,
sourceIndex)

 if abs(sampleValue) < thresholdAmplitude :
 count = count + 1
 else :

 if count > thresholdCount :
 targetIndex = targetJumpBackTo
 count = 0
 targetJumpBackTo = targetIndex

 setSampleValueAt(target, targetIndex, sampleValue)
 targetIndex = targetIndex + 1

 return target

 Suggestion: normalize
spoken sound, use a
threshold = 800,
duration = 0.01

4

Today

Fast Talking (from last time)

Sound Abstraction presentations

How to design and debug a program: Using
background subtraction and chromakey as topics.

Top-down

Bottom-up

debugging (1)

Today

Fast Talking (from last time)

Sound Abstraction presentations

How to design and debug a program: Using
background subtraction and chromakey as topics.

Top-down

Bottom-up

debugging (1)

How do programmers start?

 How do you get started with a program?
 “Programming is all about debugging a blank

piece of paper.” – Gerald Sussman
 “Debugging is anticipated with distaste,

performed with reluctance, and bragged about
forever.” – Anonymous

Today

Fast Talking (from last time)

Sound Abstraction presentations

How to design and debug a program: Using
background subtraction and chromakey as topics.

Top-down

Bottom-up

debugging (1)

Top-down method

 Figure out what has to be done.
 These are called the requirements

 Refine the requirements until they describe, in
English, what needs to be done in the program.
 Keep refining until you know how to write the

program code for each statement in English.

 Step-by-step, convert the English requirements
into program code.

Top-down Example

 Write a function called pay that takes in as input a
number of hours worked and the hourly rate to be
paid. Compute the gross pay as the hours times the
rate. If the pay is< 100, charge a tax of 0.25 ; if the
pay is >= 100 and < 300, tax rate is 0.35 ; if the pay is
>=300 and < 400, tax rate is 0.45 ; if the pay is >=
400, tax rate is 0.50 ; Compute a taxable amount as
tax rate * gross ; Print the gross pay and the net pay
(gross – taxable amount).

Top-down Example:
Refine into steps you can code
 Write a function called pay that takes in as input a

number of hours worked and the hourly rate to be paid.
 Compute the gross pay as the hours times the rate.
 If the pay is< 100, charge a tax of 0.25
 If the pay is >= 100 and < 300, tax rate is 0.35
 If the pay is >=300 and < 400, tax rate is 0.45
 If the pay is >= 400, tax rate is 0.50
 Compute a taxable amount as tax rate * gross
 Print the gross pay and the net pay (gross – taxable

amount).

Convert to program code

 √ Write a function called pay that takes
in as input a number of hours worked
and the hourly rate to be paid.

 Compute the gross pay as the hours
times the rate.

 If the pay is< 100, charge a tax of 0.25
 If the pay is >= 100 and < 300, tax rate

is 0.35
 If the pay is >=300 and < 400, tax rate

is 0.45
 If the pay is >= 400, tax rate is 0.50
 Compute a taxable amount as tax rate *

gross
 Print the gross pay and the net pay

(gross – taxable amount).

def pay(hours,rate):

Convert to program code

 √ Write a function called pay that takes
in as input a number of hours worked
and the hourly rate to be paid.

 √ Compute the gross pay as the hours
times the rate.

 If the pay is< 100, charge a tax of 0.25
 If the pay is >= 100 and < 300, tax rate

is 0.35
 If the pay is >=300 and < 400, tax rate

is 0.45
 If the pay is >= 400, tax rate is 0.50
 Compute a taxable amount as tax rate *

gross
 Print the gross pay and the net pay

(gross – taxable amount).

def pay(hours,rate):
 gross = hours * rate

Convert to program code

 √ Write a function called pay that takes
in as input a number of hours worked
and the hourly rate to be paid.

 √ Compute the gross pay as the hours
times the rate.

 √ If the pay is< 100, charge a tax of
0.25

 If the pay is >= 100 and < 300, tax rate
is 0.35

 If the pay is >=300 and < 400, tax rate
is 0.45

 If the pay is >= 400, tax rate is 0.50
 Compute a taxable amount as tax rate *

gross
 Print the gross pay and the net pay

(gross – taxable amount).

def pay(hours,rate):
 gross = hours * rate
 if pay < 100:
 tax = 0.25

Convert to program code

 √ Write a function called pay that takes
in as input a number of hours worked
and the hourly rate to be paid.

 √ Compute the gross pay as the hours
times the rate.

 √ If the pay is< 100, charge a tax of
0.25

 √ If the pay is >= 100 and < 300, tax
rate is 0.35

 √ If the pay is >=300 and < 400, tax rate
is 0.45

 √ If the pay is >= 400, tax rate is 0.50
 Compute a taxable amount as tax rate *

gross
 Print the gross pay and the net pay

(gross – taxable amount).

def pay(hours,rate):
 gross = hours * rate
 if pay < 100:
 tax = 0.25
 if 100 <= pay < 300:
 tax = 0.35
 if 300 <= pay < 400:
 tax = 0.45
 if pay >= 400:
 tax = 0.50

Convert to program code

 √ Write a function called pay that takes
in as input a number of hours worked
and the hourly rate to be paid.

 √ Compute the gross pay as the hours
times the rate.

 √ If the pay is< 100, charge a tax of
0.25

 √ If the pay is >= 100 and < 300, tax
rate is 0.35

 √ If the pay is >=300 and < 400, tax rate
is 0.45

 √ If the pay is >= 400, tax rate is 0.50
 √ Compute a taxable amount as tax rate

* gross
 Print the gross pay and the net pay

(gross – taxable amount).

def pay(hours,rate):
 gross = hours * rate
 if pay < 100:
 tax = 0.25
 if 100 <= pay < 300:
 tax = 0.35
 if 300 <= pay < 400:
 tax = 0.45
 if pay >= 400:
 tax = 0.50
 taxableAmount = gross * tax

Convert to program code

 √ Write a function called pay that takes
in as input a number of hours worked
and the hourly rate to be paid.

 √ Compute the gross pay as the hours
times the rate.

 √ If the pay is< 100, charge a tax of
0.25

 √ If the pay is >= 100 and < 300, tax
rate is 0.35

 √ If the pay is >=300 and < 400, tax rate
is 0.45

 √ If the pay is >= 400, tax rate is 0.50
 √ Compute a taxable amount as tax rate

* gross
 √ Print the gross pay and the net pay

(gross – taxable amount).

def pay(hours,rate):
 gross = hours * rate
 if pay < 100:
 tax = 0.25
 if 100 <= pay < 300:
 tax = 0.35
 if 300 <= pay < 400:
 tax = 0.45
 if pay >= 400:
 tax = 0.50
 taxableAmount = gross * tax
 print “Gross pay:”,gross
 print “Net pay:”,gross-taxableAmount

Why “top-down”?

 We start from the highest level of abstraction
 The requirements

 And work our way down to the most specificity
 To the code

 The opposite is “bottom-up”
 Top-down is the most common way that

professionals design.
 It provides a well-defined process and can be tested

throughout.

top-down

If I have seen farther than others, it is
because I am standing on the shoulders of
giants. - Issac Newton

If I have not seen very far it is because
giants are standing on my feet. - Hal
Abelson (inventor of software
engineering)

Today

Fast Talking (from last time)

Sound Abstraction presentations

How to design and debug a program: Using
background subtraction and chromakey as topics.

Top-down

Bottom-up

debugging (1)

What’s “bottom-up”?

 Start with what you know, and keep adding to it
until you’ve got your program.

 You frequently refer to programs you know.
 Frankly, you’re looking for as many pieces you can

steal as possible!

Background subtraction

 Let’s say that you have a picture of someone, and
a picture of the same place (same background)
without the someone there, could you subtract out
the background and leave the picture of the
person?

 Maybe even change the background?
 Let’s take that as our problem!

Person (Katie) and Background

Bottom-up:
Where do we start?
 What we most need to do is to figure out whether

the pixel in the Person shot is the same as the in
the Background shot.

 Will they be the EXACT same color? Probably
not.

 So, we’ll need some way of figuring out if two
colors are close…

Remember this?

def turnRed():
 brown = makeColor(57,16,8)
 file = r"C:\Documents and Settings\Mark Guzdial
\My Documents\mediasources\barbara.jpg"
 picture=makePicture(file)
 for px in getPixels(picture):
 color = getColor(px)
 if distance(color,brown)<50.0:
 redness=getRed(px)*1.5
 setRed(px,redness)
 show(picture)
 return(picture) Original:

Using distance

 So we know that we want to ask:
 if distance(personColor,bgColor) > someValue

 And what do we then?
 We want to grab the color from another background

(a new background) at the same point.

 Do we have any examples of doing that?

Copying Barb to a canvas
def copyBarb():
 # Set up the source and target pictures
 barbf=getMediaPath("barbara.jpg")
 barb = makePicture(barbf)
 canvasf = getMediaPath("7inX95in.jpg")
 canvas = makePicture(canvasf)
 # Now, do the actual copying
 targetX = 1
 for sourceX in range(1,getWidth(barb)):
 targetY = 1
 for sourceY in range(1,getHeight(barb)):
 color = getColor(getPixel(barb,sourceX,sourceY))
 setColor(getPixel(canvas,targetX,targetY), color)
 targetY = targetY + 1
 targetX = targetX + 1
 show(barb)
 show(canvas)
 return canvas

Where we are so far:

if distance(personColor,bgColor) > someValue:
 bgcolor = getColor(getPixel(newBg,x,y))
 setColor(getPixel(person,x,y), bgcolor)

 What else do we need?
 We need to get all these variables set up

 We need to input a person picture, a background (background without
person), and a new background.

 We need a loop where x and y are the right values
 We have to figure out personColor and bgColor

Swap a background using

background subtraction

def swapbg(person, bg, newbg):
 for x in range(1,getWidth(person)):
 for y in range(1,getHeight(person)):
 personPixel = getPixel(person,x,y)
 bgpx = getPixel(bg,x,y)
 personColor= getColor(personPixel)
 bgColor = getColor(bgpx)
 if distance(personColor,bgColor) > someValue:
 bgcolor = getColor(getPixel(newbg,x,y))
 setColor(getPixel(person,x,y), bgcolor)

Simplifying a little,
and specifying a little
def swapbg(person, bg, newbg):
 for x in range(1,getWidth(person)):
 for y in range(1,getHeight(person)):
 personPixel = getPixel(person,x,y)
 bgpx = getPixel(bg,x,y)
 personColor= getColor(personPixel)
 bgColor = getColor(bgpx)
 if distance(personColor,bgColor) > 10:
 bgcolor = getColor(getPixel(newbg,x,y))
 setColor(personPixel, bgcolor)

Trying it with a jungle background

What happened?

 It looks like we reversed the swap
 If the distance is great, we want to KEEP the pixel.

 If the distance is small (it’s basically the same
thing), we want to get the NEW pixel.

Reversing the swap
def swapbg(person, bg, newbg):
 for x in range(1,getWidth(person)):
 for y in range(1,getHeight(person)):
 personPixel = getPixel(person,x,y)
 bgpx = getPixel(bg,x,y)
 personColor= getColor(personPixel)
 bgColor = getColor(bgpx)
 if distance(personColor,bgColor) < 10:
 bgcolor = getColor(getPixel(newbg,x,y))
 setColor(personPixel, bgcolor)

Better!

But why isn’t it a lot better?

 We’ve got places where
we got pixels swapped
that we didn’t want to
swap
 See Katie’s shirt stripes

 We’ve got places where
we want pixels swapped,
but didn’t get them
swapped
 See where Katie made a

shadow

How could we make it better?

 What could we change in the program?
 We could change the threshold “someValue”

 If we increase it, we get fewer pixels matching
 That won’t help with the shadow

 If we decrease it, we get more pixels matching
 That won’t help with the stripe

 What could we change in the pictures?
 Take them in better light, less shadow
 Make sure that the person isn’t wearing clothes

near the background colors.

Side trip:
This is Debugging, too!
 Debugging is figuring out what your program is doing, what you want

it to do, and how to get it from where you are to where you want it to
be.

 When you get error messages, that’s the easy kind of debugging!
 You know that you just have to figure out what Python is

complaining about, and change it so that Python doesn’t
complain anymore!

 The harder kind is when the program works, but you still don’t know
why it’s not doing what you want.

 First step in any debugging: Figure out what the program is doing!
 This is true if you have errors or not.

 If you have errors, the issues are:
 Why did it work up to there?
 What are the values of the variables at that point?

Today

Fast Talking (from last time)

Sound Abstraction presentations

How to design and debug a program: Using
background subtraction and chromakey as topics.

Top-down

Bottom-up

debugging (1)

debugging

Debugging is anticipated with
distaste, performed with reluctance,

and bragged about forever.

debugging

Everyone knows that debugging is twice as hard as
writing a program in the first place. So if you are as
clever as you can be when you write it, how will you
ever debug it? - B. Kernighan (creator of “C”
language and Unix operating system)

.

debugging

Another effective [debugging] technique is to explain your code
to someone else. This will often cause you to explain the bug to
yourself. Sometimes it takes no more than a few sentences,
followed by an embarrassed "Never mind, I see what's wrong.
Sorry to bother you." This works remarkably well; you can even
use non-programmers as listeners. One university computer
center kept a teddy bear near the help desk. Students with
mysterious bugs were required to explain them to the bear
before they could speak to a human counselor. - B. Kernighan
& Pike

debugging

As soon as we started programming, we found out to
our surprise that it wasn't as easy to get programs
right as we had thought. Debugging had to be
discovered. I can remember the exact instant when I
realized that a large part of my life from then on was
going to be spent in finding mistakes in my own
programs. - M. Wilks

Debugging: understanding a

model
 To be effective at debugging, you must

understand your code as a “model” of something
 Models

 have parts, with complex relationships among them

 modifying a part might have impact in other parts

 ... another way of thinking about it: a function
with many variables
 solution = f(x, y, z, ...)

 Debugging is: understanding model, so you can
predict behavior

43

Methodically...

 So, if you don’t know what is wrong, but...

 solution = f(x, y, z, ...)

 this returns the wrong solution, how would you go
about finding what is wrong?

44

How to understand a program

 Step 1: Walk the program
 Figure out what every line is doing, and

what every variable’s value is.

 At least, do this for the lines that are confusing to you.

 Step 2: Run the program
 Does it do what you think it’s doing?

 Step 3: Check the program
 Insert print statements to figure out what values are what

in the program

 You can also use print statements to print out values like
getSampleValueAt and getRed to figure out how IF’s are
working.

How to understand a program

 Use the command area!
 Type commands to check on values, to see how functions

work.

 Not sure what getSampleValueAt does? Try it!

 Use showVars() to help, too.

 Step 4: Change the program
 Now, change the program in some interesting way

 Instead of all pixels, do only the pixels in part of the picture
 Run the program again. Can you see the effect of your

change?

 If you can change the program and understand why your
change did what it did, you understand the program

Use the Watcher

 The watcher lets you see
which lines are running
and when.

 You can add variables to
see their values.

 You can change the speed
of the program.
 Faster program

execution means fewer
updates in the Watcher.

Another way: Chromakey

 Have a background of a known
color
 Some color that won’t be

on the person you want to
mask out

 Pure green or pure blue is
most often used

 I used my son’s blue
bedsheet

 This is how the weather people
seem to be in front of a map—
they’re actually in front of a
blue sheet.

Chromakey recipe
def chromakey(source,bg):
 # source should have something in front of blue, bg is the new background
 for x in range(1,getWidth(source)):
 for y in range(1,getHeight(source)):
 p = getPixel(source,x,y)
 # My definition of blue: If the redness + greenness < blueness
 if (getRed(p) + getGreen(p) < getBlue(p)):
 #Then, grab the color at the same spot from the new background
 setColor(p,getColor(getPixel(bg,x,y)))

Can also do this with getPixels()
def chromakey2(source,bg):
 # source should have something in front of blue, bg is the new background
 for p in getPixels(source):
 # My definition of blue: If the redness + greenness < blueness
 if (getRed(p) + getGreen(p) < getBlue(p)):
 #Then, grab the color at the same spot from the new background
 setColor(p,getColor(getPixel(bg,getX(p),getY(p))))

Example results

The value of “sub-recipes”:
Algorithms
 Algorithms are ways of doing things

 Apart from programming language

 Apart even from data being used

 We’ve seen some sub-recipes/algorithms:
 Copying pixels/samples

 Sampling pixels/samples

 Algorithms are useful tools in your bag of tricks
 They offer worked out ways-of-doing-things

Designing and Debugging

 Most important hint on designing: Start from
previous programs!
 The best designers don’t start from scratch.

 Most important hint on debugging: Understand
your program.
 Know what each line is doing.

 Know what you meant for each line to be doing.

 Try lots of examples.

Tips on Background Subtraction
and Chromakey
 Use a tripod!

 If you’re off by a pixel, you’re way off

 For Background Subtraction, use a boring background
 Complex backgrounds have a lot more pixel variation, so

it’s harder to make sure that you’re close

 For Chromakey, use a background color that’s
 Primary

 Unusual. (Not red! You’ve got lots of red in your face!)

 You may have to tweak your color definition to work with
the kind of color and context you have.

In conclusion

It is easier to write an incorrect program
than understand a correct one.

in summary

 Two different kinds of problem-solving

designing / writing programs

debugging

How are they similar?

How are they different?

COMING ATTRACTIONS

Friday:

Lab in new McBryde 110

come to Lab with Group Project 2 ideas

leave with written specification for project

Monday:

read Chapters 8 & 9

quizzes 7 & 8 due 10:00 AM

COMING ATTRACTIONS

Next Wednesday

HW 6 due 10:00 AM

Friday:

Group Project 2 due 2:00 PM

Bring to Lab

