
CS 1124Media
computation

Oct 6, 2008
Steve Harrison

Today

Midterm

Introduction to working with sound

HW 5 - Faster and Faster

Today

Midterm

Introduction to working with sound

HW 5 - Faster and Faster

Mid term

Still being graded...

One “gotcha”:

in gray-scale to posterized question - first
range was <85, second range was >85 thus if
== 85, THEREFORE SHOULD BE YELLOW

Today

Midterm

Introduction to working with sound

HW 5 - Faster and Faster

How sound works:
Acoustics, the physics of sound

 Sounds are waves of air
pressure
 Sound comes in cycles

 The frequency of a wave is
the number of cycles per
second (cps), or Hertz

 (Complex sounds have more
than one frequency in them.)

 The amplitude is the
maximum height of the
wave

Volume and pitch: Psychoacoustics, the

psychology of sound

 Our perception of volume is related (logarithmically) to
changes in amplitude
 If the amplitude doubles, it’s about a 3 decibel (dB) change

 Our perception of pitch is related (logarithmically) to
changes in frequency
 Higher frequencies are perceived as higher pitches

 We can hear between 20 Hz and 20,000 Hz (20 kHz)

 A above middle C is 440 Hz
ERROR in the book!

“Logarithmically?”

 It’s strange, but our hearing works on ratios not
differences, e.g., for pitch.
 We hear the difference between 200 Hz and 400 Hz,

as the same as 500 Hz and 1000 Hz

 Similarly, 200 Hz to 600 Hz, and 1000 Hz to 3000 Hz

 Intensity (volume) is measured as watts per meter
squared
 A change from 0.1W/m2 to 0.01 W/m2, sounds the

same to us as 0.001W/m2 to 0.0001W/m2

Decibel is a logarithmic measure

 A decibel is a ratio between two intensities: 10 *
log10(I1/I2)
 As an absolute measure, it’s in comparison to

threshold of audibility

 0 dB can’t be heard.

 Normal speech is 60 dB.

 A shout is about 80 dB

Demonstrating Sound
MediaTools

Fourier transform
(FFT)

Digitizing Sound: How do we get
that into numbers?
 Remember in calculus,

estimating the curve by creating
rectangles?

 We can do the same to estimate
the sound curve
 Analog-to-digital conversion

(ADC) will give us the
amplitude at an instant as a
number: a sample

 How many samples do we
need?

-1.50

-1.25

-1.00

-0.75

-0.50

-0.25

0

0.25

0.50

0.75

1.00

1.25

1.50

Nyquist Theorem

 We need twice as many samples as the maximum
frequency in order to represent (and recreate, later) the
original sound.

 The number of samples recorded per second is the
sampling rate
 If we capture 8000 samples per second, the highest

frequency we can capture is 4000 Hz
 That’s how phones work

 If we capture more than 44,000 samples per second, we
capture everything that we can hear (max 22,000 Hz)

 CD quality is 44,100 samples per second

Digitizing sound in the computer

 Each sample is stored as a number (two bytes)
 called a “word”

 What’s the range of available combinations?
 16 bits, 216 = 65,536

 But we want both positive and negative values
 To indicate compressions and rarefactions.

 What if we use one bit to indicate positive (0) or negative (1)?

 That leaves us with 15 bits

 15 bits, 215 = 32,768

 One of those combinations will stand for zero
 We’ll use a “positive” one, so that’s one less pattern for positives

Not in the book

+/- 32K (32,767)

 Each sample can be between -32,768 and 32,767

Compare this to 0 ... 255 for light intensity

(i.e. 8 bits or 1 byte)

Why such a bizarre number?

Because 32,768 + 32,767 + 1 = 216

i.e. 16 bits, or 2 bytes< 0 > 0 0

bytes, words and binary numbers

 Each sample is stored as a number (two bytes)
 called a “word”

 What’s the range of available combinations?
 16 bits, 216 = 65,536 combinations

 or -32,768 to 32,767

 or (two’s complement arithmetic)

Not in the book

+/- 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 32,767
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 -2
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -32,768

http://en.wikipedia.org/wiki/Two&%2339;s_complement
http://en.wikipedia.org/wiki/Two&%2339;s_complement

Sounds as arrays

 Samples are just stored one right after the other in the
computer’s memory

 That’s called an array
 It’s an especially efficient (quickly accessed) memory

structure

 each sample is two bytes (or ONE WORD)

(Like pixels in a picture)

Working with sounds

 We’ll use pickAFile and makeSound.
 We want .wav files

 We’ll use getSamples to get all the sample objects out of a
sound

 We can also get the value at any index with
getSampleValueAt

 Sounds also know their length (getLength) and their
sampling rate (getSamplingRate)

 Can save sounds with writeSoundTo(sound,”file.wav”)

Demonstrating Working with
Sound in JES

>>> filename = pickAFile()
>>> print filename
/Users/guzdial/mediasources/preamble.wav
>>> sound = makeSound(filename)
>>> print sound
Sound of length 421109
>>> samples = getSamples(sound)
>>> print samples
Samples, length 421109
>>> print getSampleValueAt(sound, 1)
36
>>> print getSampleValueAt(sound, 2)
29

Demonstrating working with
samples
>>> print getLength(sound)
220568
>>> print getSamplingRate(sound)
22050.0
>>> print getSampleValueAt(sound, 220568)
68
>>> print getSampleValueAt(sound, 220570)
I wasn't able to do what you wanted.
The error java.lang.ArrayIndexOutOfBoundsException has occured
Please check line 0 of
>>> print getSampleValueAt(sound, 1)
36
>>> setSampleValueAt(sound,1, 12)
>>> print getSampleValueAt(sound, 1)
12

Working with Samples

 We can get sample objects out of a sound with
getSamples(sound) or
getSampleObjectAt(sound, index)

 A sample object remembers its sound, so if you
change the sample object, the sound gets changed.

 Sample objects understand getSample(sample)
and setSample(sample, value)

Example: Manipulating Samples
>>> soundfile=pickAFile()
>>> sound=makeSound(soundfile)
>>> sample=getSampleObjectAt(sound, 1)
>>> print sample
Sample at 1 value at 59
>>> print sound
Sound of length 387573
>>> print getSound(sample)
Sound of length 387573
>>> print getSample(sample)
59
>>> setSample(sample, 29)
>>> print getSample(sample)
29

“But there are thousands of
these samples!”
 How do we do something to these samples to

manipulate them, when there are thousands of
them per second?

 We use a loop and get the computer to iterate in
order to do something to each sample.

 An example loop:

for sample in getSamples(sound):
 value = getSample(sample)
 setSample(sample, value)

Let’s try a few things ...

 normalize(sound)
 from the book

 and revised with abs(), testing for largest @ limit of

32,767 or -32,768 and return sound

 double(sound)
 what happens if > 32,767?

 what does it sound like? what does it look like?

23

Normalizing

 A few ways to think about “normalizing”:
 use the whole enchilada (don’t waste any bits...)

 make everything use the same scale (0 to 100%)

 need 2 loops -- one to find largest and one to reset
def normalize(sound) :
 largest = 0
 for sample in getSamples(sound):

 largest = max(largest, getSample(sample))
 multiplier = 32767.0 / largest
 print “Largest”, largest, “multiplier is”, multiplier
 for sample in getSamples(sound):

setSample(sample, getSample(sample) * multiplier)

Normalizing (modified)

def normalize(sound) :
 largest = 0
 for sample in getSamples(sound):

largest = max(largest, abs(getSample(sample)))
if largest > 32766 :

return sound
 multiplier = 32768.0 / largest
 print “Largest”, largest, “multiplier is”, multiplier
 for sample in getSamples(sound):

setSample(sample, getSample(sample) * multiplier)
 return sound

Normalizing (modified)

def normalize(sound) :
 largest = 0
 for sample in getSamples(sound):

largest = max(largest, abs(getSample(sample)))
if largest > 32766 :

return sound
 multiplier = 32768.0 / largest
 print “Largest”, largest, “multiplier is”, multiplier
 for sample in getSamples(sound):

setSample(sample, getSample(sample) * multiplier)
 return sound

Normalizing (modified)

def normalize(sound) :
 largest = 0
 for sample in getSamples(sound):

largest = max(largest, abs(getSample(sample)))
if largest > 32766 :

return sound
 multiplier = 32768.0 / largest
 print “Largest”, largest, “multiplier is”, multiplier
 for sample in getSamples(sound):

setSample(sample, getSample(sample) * multiplier)
 return sound

Normalizing (modified)

def normalize(sound) :
 largest = 0
 for sample in getSamples(sound):

largest = max(largest, abs(getSample(sample)))
if largest > 32766 :

return sound
 multiplier = 32768.0 / largest
 print “Largest”, largest, “multiplier is”, multiplier
 for sample in getSamples(sound):

setSample(sample, getSample(sample) * multiplier)
 return sound

Normalizing (modified)

def normalize(sound) :
 largest = 0
 for sample in getSamples(sound):

largest = max(largest, abs(getSample(sample)))
if largest > 32766 :

return sound
 multiplier = 32768.0 / largest
 print “Largest”, largest, “multiplier is”, multiplier
 for sample in getSamples(sound):

setSample(sample, getSample(sample) * multiplier)
 return sound

Doubling the amplitude

def double(sound) :
 for sample in getSamples(sound):

value = getSample(sample)
setSample(sample, value * 2)

Today

Midterm

Introduction to working with sound

HW 5 - Faster and Faster

Assignment 5 - Due Wed 10/15

 Faster and Faster (or Higher and Higher)
 For a sound:

 increasingly compress the sound:

 0% - 25% 1:1 (no compression)
 25%-50% 1:1.25
 50% - 75% 1:1.5
 75% -100% 1:2 (twice as fast)

 print out how much shorter in seconds the

compressed sound is

 save the sound to a file

28

Assignment 5

 For extra credit on Final Exam
 For a sound:

 #comment that you are doing the challenge

 increasingly compress the sound:

 0% - 25% 1:1 (no compression)
 25% -100% smoothly change from 1:1 to 1:2 (twice as

fast) instead of in steps
 print out how much shorter in seconds the

compressed sound is

 this method should produce different results from basic
 save the sound to a file 29

Questions?

30

Today

Midterm

Introduction to working with sound

HW 5 - Faster and Faster

Coming attractions

 Today - LAST DAY TO REGISTER TO VOTE
 For Next Monday:

 read Chapter 7

 Quiz 7 due 10:00 am

32

