
CS 1124
Media Computation

Steve Harrison
Lecture 6.1 (September 29, 2008)

Today

HW 4
Bailing out of loops using return
Drawing graphics
Review of everything!

2

Batter up issues

How did you solve the puzzle?
Here are some solutions ...

3

One solution

How did you solve the puzzle?
Lets count the black pixels in the

strike zone
if count == # of black pixels counted

with MediaTools, then print “Strike”

4

“Ball”

“Strike”

One “gotcha” and a solution

How did you solve the puzzle?
Notice that if there is any black

touching the red lines then its a
“ball”

5

“Ball”

“Ball”

“Strike”

One “gotcha” and a solution

How did you solve the puzzle?
Notice that if there is any black

touching the red lines then its a
“ball”

Therefore, a strike is:
no black in lines just inside strike

zone box

and any black inside that smaller

rectangle

6

“Ball”

“Ball”

“Strike”

One “gotcha” and a solution

How did you solve the puzzle?
Notice that if there is any black

touching the red lines then its a
“ball”

Therefore, a strike is:
no black in lines just inside strike

zone box

and any black inside that smaller

rectangle

6

“Ball”

“Ball”

“Strike”

One “gotcha” and a solution

So the psuedocode is:
search for black one pixel in from red

line:
top white line (yUL +1)
bottom white line (yLR - 1)
left white line (xUL + 1)
right white line (xLR - 1)
If any black then “ball” and DONE

search for black in rectangle two in

from red line
for x in range(xUL+2, xLR-2)
for y in range(yUL+2, yLR-2)
If any black then “strike” and DONE 7

“Ball”

“Ball”

“Strike”

Batter up issues

Other solutions?

8

Today

HW 4
Bailing out of loops using return
Drawing graphics
Review of everything!

9

Today

HW 4
Bailing out of loops using return
Drawing graphics
Review of everything!

9

def findFirstBlackPixel(picture, xUL, yUL, xLR, yLR):
 for x in range(xUL, xLR):
 for y in range(yUL, yLR):
 px = getPixel(picture, x, y)
 red = getRed(px)
 green = getGreen(px)
 blue = getBlue(px)
 if (red < 2) and (green < 2) and (blue < 2):
 return “strike”
 return “ball”

10So how would you call this function?

One More thing ... Using return
to bail out of loops

def findFirstBlackPixel(picture):
 for x in range(1, getWidth(picture)):
 for y in range(1, getHeight(picture)):
 px = getPixel(picture, x, y)
 red = getRed(px)
 green = getGreen(px)
 blue = getBlue(px)
 if (red < 2) and (green < 2) and (blue < 2):
 return px

11Why return the pixel?

Lets say you want the x,y

Using the returned value
return px

firstBlackPixel = findFirstBlackPixel(picture)

firstBlackPixelXLocation = getX(firstBlackPixel)

firstBlackPixelYLocation = getY(firstBlackPixel)

return x, y
“x,y = findFirstBlackPixel(picture)” is not valid Python

return [x,y]
is sequence

pxlLocation = findFirstBlackPixel(picture)

firstBlackPixelXLocation = pxlLocation[0]

firstBlackPixelYLocation = pxlLocation[1]

Any other?
12

Today

HW 4
Bailing out of loops using return
Drawing graphics
Review of everything!

13

Example picture
def littlepicture():
 canvas=makePicture(getMediaPath("640x480.jpg"))
 addText(canvas,10,50,"This is not a picture")
 addLine(canvas,10,20,300,50)
 addRectFilled(canvas,0,200,300,500,yellow)
 addRect(canvas,10,210,290,490)
 return canvas

Notice that these draw
outside the canvas without
giving an error !

Is this a bug or a feature?

Vector-based representations can be
smaller

Vector-based representations can be much smaller
than bit-mapped representations
Smaller means faster transmission (Flash and

Postscript)

If you want all the detail of a complex picture, no, it’s

not.

But vector-based has more value
than that
 Imagine that you’re editing a picture with lines on it.

 If you edit a bitmap image and extend a line, it’s just more bits.
 There’s no way to really realize that you’ve extended or shrunk the line.

 If you edit a vector-based image, it’s possible to just change the
specification
 Change the numbers saying where the line is
 Then it really is the same line

 That’s important when the picture drives the creation of the
product, like in automatic cutting machines

And another

def coolpic2():
 canvas=makePicture(getMediaPath("640x480.jpg"))
 for index in range(25,1,-1):
 addRect(canvas,index,index,index*3,index*4)
 addRect(canvas,100+index*4,100+index*3,index*8,index*10)
 show(canvas)
 return canvas

Why do we write programs?

Could we do this in Illustrator? Maybe
I’m sure that you can, but you need to know how.

Illustrator is probably better, but still need to learn.

Could I teach you to do this in Photoshop? Maybe
Might take a lot of demonstration

But this program is an exact definition of the
process of generating this picture
It works for anyone who can run the program, without

knowing Photoshop

We write programs to encapsulate
and communicate process

If you can do it by hand, do it.
If you need to teach someone else to do it, consider

a program.
If you need to explain to lots of people how to do it,

definitely use a program.
If you want lots of people to do it without having to

teach them something first, definitely use a
program.

Drawing Graphics

 Referring to individual pixels
by x,y location

 Drawing graphics by
changing lots of pixels

 Graphics functions that are
built in to JES

 Programmed graphics

- Each pixel knows its x,y position
- range() returns a list of
numbers (not pixels)
- we can use range() to define
which x,y pixels are interesting

- Works, but tedious & slow

- addText(), addRect(), etc.

-Vector graphics take less space
- & can be changed easily
-Really, small special graphics recipes
-Created by modifying canvas

Today

HW 4
Bailing out of loops using return
Drawing graphics
Review of everything!

21

Brief Review of Everything We’ve
Learned in the Last Month

What does this do?
And how does it work?

22

def function(picture):
 for pixel in getPixels(picture):
 setRed(pixel,0)

23

def function(picture):
 for pixel in getPixels(picture):
 setRed(pixel,0)

23Removes the red from every pixel

def function(picture):
 noRed = 0
 for pixel in getPixels(picture):

pxlGreen = getGreen(pixel)
pxlBlue = getblue(pixel)
newColor = makeColor(noRed, pxlGreen, pxlBlue)

 setColor(pixel, newColor)

24

def function(picture):
 noRed = 0
 for pixel in getPixels(picture):

pxlGreen = getGreen(pixel)
pxlBlue = getblue(pixel)
newColor = makeColor(noRed, pxlGreen, pxlBlue)

 setColor(pixel, newColor)

24

SAME THING -- MORE CODE
Removes the red from every pixel

def function(picture):
 for px in getPixels(picture):
 red=getRed(px)
 green=getGreen(px)
 blue=getBlue(px)
 negColor=makeColor(255-red,255-green,255-blue)
 setColor(px,negColor)

25

def function(picture):
 for px in getPixels(picture):
 red=getRed(px)
 green=getGreen(px)
 blue=getBlue(px)
 negColor=makeColor(255-red,255-green,255-blue)
 setColor(px,negColor)

25Turns every pixel to negative of self

def function(picture):
 for p in getPixels(picture):
 value = getRed(p)
 setRed(p, value * 0.5)

26

def function(picture):
 for p in getPixels(picture):
 value = getRed(p)
 setRed(p, value * 0.5)

26Decreases the red in every pixel by 1/2

def function(picture):
 for x in range(1, getWidth(picture)):
 for y in range(1, getHeight(picture)):
 px = getPixel(picture, x, y)
 value = getRed(px)
 setRed(px, value * 1.1)

27

def function(picture):
 for x in range(1, getWidth(picture)):
 for y in range(1, getHeight(picture)):
 px = getPixel(picture, x, y)
 value = getRed(px)
 setRed(px, value * 1.1)

27Increases the red from every pixel by 10%

def function():
 # Set up the source and target pictures
 barbf = getMediaPath("barbara.jpg")
 barb = makePicture(barbf)
 canvasf = getMediaPath("7inX95in.jpg")
 canvas = makePicture(canvasf)
 # Now, do the actual copying
 sourceX = 45
 for targetX in range(100,100+((200-45)/2)):
 sourceY = 25
 for targetY in range(100,100+((200-25)/2)):
 color = getColor(getPixel(barb,sourceX,sourceY))
 setColor(getPixel(canvas,targetX,targetY), color)
 sourceY = sourceY + 2
 sourceX = sourceX + 2
 show(barb)
 show(canvas)
 return canvas 28

def function():
 # Set up the source and target pictures
 barbf = getMediaPath("barbara.jpg")
 barb = makePicture(barbf)
 canvasf = getMediaPath("7inX95in.jpg")
 canvas = makePicture(canvasf)
 # Now, do the actual copying
 sourceX = 45
 for targetX in range(100,100+((200-45)/2)):
 sourceY = 25
 for targetY in range(100,100+((200-25)/2)):
 color = getColor(getPixel(barb,sourceX,sourceY))
 setColor(getPixel(canvas,targetX,targetY), color)
 sourceY = sourceY + 2
 sourceX = sourceX + 2
 show(barb)
 show(canvas)
 return canvas 28

Makes a new smaller picture of barb
by getting every other pixel

def function():
 # Set up the source and target pictures
 barbf=getMediaPath("barbara.jpg")
 barb = makePicture(barbf)
 canvasf = getMediaPath("7inX95in.jpg")
 canvas = makePicture(canvasf)
 # Now, do the actual copying
 sourceX = 45
 for targetX in range(100,100+((200-45)*2)):
 sourceY = 25
 for targetY in range(100,100+((200-25)*2)):
 color = getColor(getPixel(barb,int(sourceX),int(sourceY)))
 setColor(getPixel(canvas,targetX,targetY), color)
 sourceY = sourceY + 0.5
 sourceX = sourceX + 0.5
 show(barb)
 show(canvas)
 return canvas 29

def function():
 # Set up the source and target pictures
 barbf=getMediaPath("barbara.jpg")
 barb = makePicture(barbf)
 canvasf = getMediaPath("7inX95in.jpg")
 canvas = makePicture(canvasf)
 # Now, do the actual copying
 sourceX = 45
 for targetX in range(100,100+((200-45)*2)):
 sourceY = 25
 for targetY in range(100,100+((200-25)*2)):
 color = getColor(getPixel(barb,int(sourceX),int(sourceY)))
 setColor(getPixel(canvas,targetX,targetY), color)
 sourceY = sourceY + 0.5
 sourceX = sourceX + 0.5
 show(barb)
 show(canvas)
 return canvas 29

Makes a new larger picture of barb
by duplicating every pixel

def function(p1):
 for p2 in getPixels(p1):
 setRed(p2 ,0)
 return p1

30

def function(p1):
 for p2 in getPixels(p1):
 setRed(p2 ,0)
 return p1

30Removes the red from every pixel

def function(param1, param2) :
if (param1 < param2) :

return param1
else :

return param2

31

def function(param1, param2) :
if (param1 < param2) :

return param1
else :

return param2

31Return lesser parameter

def function(picture):
columns = 0
rows = 0

 for x in range(1, getWidth(picture)):
 columns = columns + 1

 for y in range(1, getHeight(picture)):
rows = rows + 1
pxl = getPixel(picture,x,y)
value = getRed(pxl)

 setRed(pxl, value * 0.5)
 print columns, rows

32

What does this do & what does this print?

def function(picture):
columns = 0
rows = 0

 for x in range(1, getWidth(picture)):
 columns = columns + 1

 for y in range(1, getHeight(picture)):
rows = rows + 1
pxl = getPixel(picture,x,y)
value = getRed(pxl)

 setRed(pxl, value * 0.5)
 print columns, rows

32# of columns processed (one less than total)

What does this do & what does this print?

def function(picture):
columns = 0
rows = 0

 for x in range(1, getWidth(picture)):
 columns = columns + 1

 for y in range(1, getHeight(picture)):
rows = rows + 1
pxl = getPixel(picture,x,y)
value = getRed(pxl)

 setRed(pxl, value * 0.5)
 print columns, rows

32# of (rows * columns) processed

What does this do & what does this print?

def function(variable1) :
variable1 = makePicture(variable1)
one = 4
four = 2
for variable3 in getPixels(variable1) :

if (getRed(variable3) < 127) :
variable4 = variable4 + four

else :
variable2 = variable2 + one

if (variable2 > variable4) :
return variable4

else :
return variable1

33

def function(variable1) :
variable1 = makePicture(variable1)
one = 4
four = 2
for variable3 in getPixels(variable1) :

if (getRed(variable3) < 127) :
variable4 = variable4 + four

else :
variable2 = variable2 + one

if (variable2 > variable4) :
return variable4

else :
return variable1

33Count pixels with less red, return count of ???

What was wrong with that last
function?
It returned two different kinds of things - a number

or a picture
if (variable2 > variable4) :

return variable4
 else :

return variable1

The variable names are not representative
variable1 is a filename then a picture
Variables “one” and “four” are misleading
Both variable2 and variable4 increment but are not

initialized. (This would prevent running.)
There are no comments 34

Study advice

Re-read the book
Try more of the recipes. Vary them.

Take chances

make mistakes

learn from them!

35

Coming Attractions
Wednesday

Exam 1 on visual progamming

multiple choice
write programs (list of functions provided)
closed book
closed computer

on-line study quiz

Friday
Tom Igoe @ 4:30 in Squires Studio Theater

Next Monday
read chapter 6

online quiz due 10:00 AM
36

