CS 1124
Media Computation

Steve Harrison
Lecture 6.1 (September 29, 2008)

Today

mHW 4

® Bailing out of loops using return
B Drawing graphics

mReview of everything!

Batter up issues

B How did you solve the puzzle?
B Here are some solutions ...

One solution

“Ball”

B How did you solve the puzzle?

B[cts count the black pixels 1n the
strike zone ...

if count == # of black pixels counted
with MediaTools, then print “Strike”

One “gotcha” and a solution

® How did you solve the puzzle? o

m Notice that if there 1s any black
touching the red lines then its a

¢ Cba119 b/

One “gotcha” and a solution

® How did you solve the puzzle? oy

m Notice that if there 1s any black

touching the red lines then its a
“ball”

B Therefore, a strike 1s:

no black in lines just inside strike
zone box

and any black inside that smaller
rectangle

One “gotcha” and a solution

. “Ball”
® How did you solve the puzzle? a' F -
1“Strike”

m Notice that if there 1s any black

touching the red lines then its a
“ball”

B Therefore, a strike 1s:

no black in lines just inside strike
zone box

and any black inside that smaller
rectangle

One “gotcha” and a solution

B So the psuedocode 1s: Ba'"
search for black one pixel in from red
line:

mtop white line (yUL +1)

mbottom white line (yLR - 1)

m]eft white line (XUL + 1)

mright white line (XxLR - 1)

m[f any black then “ball” and DONE
search for black in rectangle two in
from red line

mfor x 1n range(xUL+2, XxLLR-2)

mfor y in range(yUL+2, yLR-2)

m[f any black then “strike” and DONE

Batter up issues

B Other solutions?

Today

mHW 4

® Bailing out of loops using return
B Drawing graphics

mReview of everything!

mHW 4
® Bailing out of loops using return

gt~ _____________One More Using return

to bail out of loops
def findFirstBlackPixel(picture, xUL, yUL, XLR, yLR):

for x in range(xUL, xLR):
for y in range(yUL, yLR):
PX = (picture, X, y)
red = (px)
green = (px)
blue = (px)
if (red <2) and (green < 2) and (blue < 2):
return “strike”
return “ball”

So how would you call this function?

" N T T 1Tyou want the x,y

def findFirstBlackPixel(picture):
for x in range(1, getWidth(picture)):
for y in range(1, cetHeight(picture)):
px = getPixel(picture, X, y)
red = getRed(px)
oreen = getGreen(px)

blue = getBlue(px)
if (red <2) and (green < 2) and (blue < 2):
return px

Why return the pixel?

Using the returned value

Ereturn pXx

firstBlackPixel = findFirstBlackPixel(picture)
firstBlackPixelXLocation = getX(firstBlackPixel)
firstBlackPixelYLocation = getY(firstBlackPixel)

Breturn X, y
“x,y = findFirstBlackPixel(picture)” is not valid Python

Ereturn [X,V]

is sequence

pxlLocation = findFirstBlackPixel(picture)
firstBlackPixelXLocation = pxiLocation[0]

firstBlackPixelYLocation = pxiLocation[1]

B Any other?

Today

mHW 4

® Bailing out of loops using return
B Drawing graphics

mReview of everything!

" N CF 1N Tor a feature?

Example picture

def littlepicture():
canvas=makePicture(getMediaPath("640x480.jpg"))

addText(canvas,10,50,"This 1s not a picture") NO‘“OQ fhaf fhese draw

addLine(canvas,10,20,300,50) / : ‘
addRectFilled(canvas,0,200,300,500,yellow) outside the canvas without
C

- l
addRect(canvas, 10,210,290 490p=——" JIVING ak error:

return canvas

Vector-based representations can bhe
smaller

B Vector-based representations can be much smaller
than bit-mapped representations

Smaller means faster transmission (Flash and
Postscript)

If you want all the detail of a complex picture, no, it’s
not.

But vector-based has more value
than that

B Imagine that you’re editing a picture with lines on it.
If you edit a bitmap image and extend a line, it’s just more bits.
® There’s no way to really realize that you’ve extended or shrunk the line.

If you edit a vector-based image, it’s possible to just change the
specification

® Change the numbers saying where the line 1s
® Then 1t really is the same line

B That’s important when the picture drives the creation of the
product, like 1n automatic cutting machines

And another

def coolpic2():
canvas=makePicture(getMediaPath("640x480.jpg"))
for index 1n range(25,1,-1):
addRect(canvas,index,index,index*3,index*4)
addRect(canvas,100+index*4,100+index*3,index*8,index*10)

show(canvas)

return canvas @

Why do we write programs?

B Could we do this 1n Illustrator? Maybe

I’m sure that you can, but you need to know how.

lllustrator is probably better, but still need to learn.

B Could I teach you to do this 1n Photoshop? Maybe

Might take a lot of demonstration

B But this program 1s an exact definition of the
process of generating this picture

It works for anyone who can run the program, without
knowing Photoshop

We write programs to encapsulate
and communicate process

B [f you can do 1t by hand, do it.

B [f you need to teach someone else to do 1t, consider
a program.

B [f you need to explain to lots of people how to do it,
definitely use a program.

B [f you want lots of people to do i1t without having to
teach them something first, definitely use a
program.

Drawing Graphics

- Each pixel knows its x,y position
m Referring to individual pixels range() returns a list of

by x,y location | numbers (not pixels)

- we can use range() to define

which x,y pixels are interesting
changing lots of pixels - -

B Drawing graphics by /

- Works, but tedious & slow

B Graphics functions that are
built in to JES JRE—— addText(), addRect(), etc.

-Vector graphics take less space
B Programmed graphics |- & can be changed easily

— | -Really, small special graphics recipes
-Created by modifying canvas

Today

mHW 4

® Bailing out of loops using return
B Drawing graphics

mReview of everything!

Brief Review of Everything We’ve
Learned in the Last Month

® What does this do?
® And how does 1t work?

def function(picture):
for pixel in getPixels(picture):
setRed(pixel,0)

def function(picture):
for pixel in getPixels(picture):
setRed(pixel,0)

Removes the red from every pixel

def function(picture):
noRed = (
for pixel in getPixels(picture):
pxlGreen = getGreen(pixel)
pxIBlue = getblue(pixel)
newColor = makeColor(noRed, pxlGreen, pxiBlue)
setColor(pixel, newColor)

def function(picture):
noRed = (
for pixel in getPixels(picture):
pxlGreen = getGreen(pixel)
pxIBlue = getblue(pixel)
newColor = makeColor(noRed, pxlGreen, pxiBlue)
setColor(pixel, newColor)

SAME THING -- MORE CODE
Removes the red from every pixel

def function(picture):
for px in getPixels(picture):
red=getRed(px)
sreen=getGreen(px)
blue=getBlue(px)

negColor=makeColor(255-red,255-green,255-blue)
setColor(px,negColor)

def function(picture):
for px in getPixels(picture):
red=getRed(px)
sreen=getGreen(px)
blue=getBlue(px)
negColor=makeColor(255-red,255-green,255-blue)
setColor(px,negColor)

Turns every pixel to negative of self

def function(picture):
for p in getPixels(picture):
value = getRed(p)
setRed(p, value * 0.5)

def function(picture):
for p in getPixels(picture):
value = getRed(p)
setRed(p, value * 0.5)

Decreases the red in every pixel by 1/2

def function(picture):
for x in range(1, cetWidth(picture)):
for y in range(1, getHeight(picture)):
px = getPixel(picture, X, y)
value = getRed(px)

setRed(px, value * 1.1)

def function(picture):
for x in range(1, cetWidth(picture)):
for y in range(1, getHeight(picture)):
px = getPixel(picture, X, y)
value = getRed(px)

setRed(px, value * 1.1)

Increases the red from every pixel by 10% =27

def function():
Set up the source and target pictures
barbf = getMediaPath("barbara.jpg")
barb = makePicture(barbf)
canvasf = getMediaPath("7inX95in.jpg"")
canvas = makePicture(canvast)
Now, do the actual copying
sourceX =43

for targetX in range(100,100+((200-45)/2)):
sourceY = 25

for targetY in range(100,100+((200-25)/2)):
color = getColor(getPixel(barb,sourceX,sourceY))
setColor(getPixel(canvas,targetX,targetY), color)
sourceY = sourceY + 2
sourceX = sourceX + 2
show(barb)
show(canvas)
return canvas

" N ETCETa new smaller picture of barb
by getting every other pixel

def function():
Set up the source and target pictures
barbf = getMediaPath("barbara.jpg")
barb = makePicture(barbf)
canvasf = getMediaPath("7inX95in.jpg"")
canvas = makePicture(canvast)
Now, do the actual copying
sourceX =43
for targetX in range(100,100+((200-45)/2)):
sourceY = 25
for targetY in range(100,100+((200-25)/2)):
color = getColor(getPixel(barb,sourceX,sourceY))
setColor(getPixel(canvas,targetX,targetY), color)
sourceY = sourceY + 2
sourceX = sourceX + 2
show(barb)
show(canvas)
return canvas

def function():
Set up the source and target pictures
barbf=getMediaPath("barbara.jpg")
barb = makePicture(barbf)
canvasf = getMediaPath("7inX95in.jpg"")
canvas = makePicture(canvast)
Now, do the actual copying
sourceX =43
for targetX in range(100,100+((200-45)%*2)):
sourceY = 25
for targetY in range(100,100+((200-25)*2)):
color = getColor(getPixel(barb,int(sourceX),int(sourceY)))
setColor(getPixel(canvas,targetX,targetY), color)
sourceY = sourceY + 0.5
sourceX = sourceX + 0.5
show(barb)
show(canvas)
return canvas

" N E1CCTa new larger picture of barb
by duplicating every pixel

def function():
Set up the source and target pictures
barbf=getMediaPath("barbara.jpg")
barb = makePicture(barbf)
canvasf = getMediaPath("7inX95in.jpg"")
canvas = makePicture(canvast)
Now, do the actual copying
sourceX =43
for targetX in range(100,100+((200-45)%*2)):
sourceY = 25
for targetY in range(100,100+((200-25)*2)):
color = getColor(getPixel(barb,int(sourceX),int(sourceY)))
setColor(getPixel(canvas,targetX,targetY), color)
sourceY = sourceY + 0.5
sourceX = sourceX + 0.5
show(barb)
show(canvas)
return canvas

def function(p1):
for p2 in getPixels(pl):
setRed(p2 ,0)
return pl

def function(p1):
for p2 in getPixels(pl):
setRed(p2 ,0)
return pl

Removes the red from every pixel

def function(paraml, param?2) :
if (paraml < param?2) :
return paraml
else :
return param?2

def function(paraml, param?2) :
if (paraml < param?2) :
return paraml
else :
return param?2

Return lesser parameter

- UWLHELCEEET 10 0 & what does this print?

def function(picture):
columns = (
rows = ()
for x in range(1, getWidth(picture)):
columns = columns + 1

for y in range(l, getHeight(picture)):
rows = rows + 1
pxl = getPixel(picture,x.,y)
value = getRed(pxl)

setRed(pxl, value * 0.5)
print columns, rows

What does thi & what does this print?

def function(picture):
columns = (
rows = (
for x in range(1, (picture)):
columns = columns + 1

for y in range(1, (picture)):
rows = rows + 1

pxl = (picture,x.,y)
value = (pxD)
(pxl, value * 0.5)

print columns, rows
of columns processed (one less than total):

- What does thi & what does this print?

def function(picture):
columns = (
rows = (
for x in range(1, (picture)):
columns = columns + 1

for y in range(1, (picture)):
rows = rows + 1

pxl = (picture,x.,y)
value = (pxD)
(pxl, value * 0.5)

print columns, rows
of (rows * columns) processed

def function(variablel) :
variablel = makePicture(variablel)
one =4
four =2
for variable3 in getPixels(variablel) :
if (getRed(variable3) <127):

variable4 = variable4 + four
else :
variable2 = variable2 + one
if (variable2 > variable4) :
return variable4
else :
return variablel

def function(variablel) :
variablel = makePicture(variablel)
one =4
four =2
for variable3 in getPixels(variablel) :
if (getRed(variable3) <127):

variable4 = variable4 + four
else :
variable2 = variable2 + one
if (variable2 > variable4) :
return variable4
else :
return variablel

Count pixels with less red, return count of 722

What was wrong with that last

function?

B[t returned two different kinds of things - a number
or a picture

if (variable2 > variable4) :
return variable4
else :
return variablel

B The variable names are not representative
mvariablel 1s a filename then a picture

B Variables “one” and “four” are misleading

B Both variable2 and variable4 increment but are not
mitialized. (This would prevent running.)

B There are no comments

Study advice

B Re-read the book
B Try more of the recipes. Vary them.

Take chances
make mistakes

learn from them!

Coming Attractions
® Wednesday

Exam 1 on visual progamming

mmultiple choice

mwrite programs (list of functions provided)
mclosed book

Physical
Computing

mclosed computer

i ¥ / ICIakin
on-line study quiz | . Lo g =

®Friday
Tom Igoe @ 4:30 in Squires Studio Theater
B Next Monday

read chapter 6
online auiz due 10:00 AM

