
CS 1124
Media Computation

Steve Harrison
Lecture 6.1 (September 29, 2008)

Today

HW 4
Bailing out of loops using return
Drawing graphics
Review of everything!

2

Batter up issues

How did you solve the puzzle?
Here are some solutions ...

3

One solution

How did you solve the puzzle?
Lets count the black pixels in the

strike zone
if count == # of black pixels counted

with MediaTools, then print “Strike”

4

“Ball”

“Strike”

One “gotcha” and a solution

How did you solve the puzzle?
Notice that if there is any black

touching the red lines then its a
“ball”

5

“Ball”

“Ball”

“Strike”

One “gotcha” and a solution

How did you solve the puzzle?
Notice that if there is any black

touching the red lines then its a
“ball”

Therefore, a strike is:
no black in lines just inside strike

zone box

and any black inside that smaller

rectangle

6

“Ball”

“Ball”

“Strike”

One “gotcha” and a solution

How did you solve the puzzle?
Notice that if there is any black

touching the red lines then its a
“ball”

Therefore, a strike is:
no black in lines just inside strike

zone box

and any black inside that smaller

rectangle

6

“Ball”

“Ball”

“Strike”

One “gotcha” and a solution

So the psuedocode is:
search for black one pixel in from red

line:
top white line (yUL +1)
bottom white line (yLR - 1)
left white line (xUL + 1)
right white line (xLR - 1)
If any black then “ball” and DONE

search for black in rectangle two in

from red line
for x in range(xUL+2, xLR-2)
for y in range(yUL+2, yLR-2)
If any black then “strike” and DONE 7

“Ball”

“Ball”

“Strike”

Batter up issues

Other solutions?

8

Today

HW 4
Bailing out of loops using return
Drawing graphics
Review of everything!

9

Today

HW 4
Bailing out of loops using return
Drawing graphics
Review of everything!

9

def findFirstBlackPixel(picture, xUL, yUL, xLR, yLR):
 for x in range(xUL, xLR):
 for y in range(yUL, yLR):
 px = getPixel(picture, x, y)
 red = getRed(px)
 green = getGreen(px)
 blue = getBlue(px)
 if (red < 2) and (green < 2) and (blue < 2):
 return “strike”
 return “ball”

10So how would you call this function?

One More thing ... Using return
to bail out of loops

def findFirstBlackPixel(picture):
 for x in range(1, getWidth(picture)):
 for y in range(1, getHeight(picture)):
 px = getPixel(picture, x, y)
 red = getRed(px)
 green = getGreen(px)
 blue = getBlue(px)
 if (red < 2) and (green < 2) and (blue < 2):
 return px

11Why return the pixel?

Lets say you want the x,y

Using the returned value
return px

firstBlackPixel = findFirstBlackPixel(picture)

firstBlackPixelXLocation = getX(firstBlackPixel)

firstBlackPixelYLocation = getY(firstBlackPixel)

return x, y
“x,y = findFirstBlackPixel(picture)” is not valid Python

return [x,y]
is sequence

pxlLocation = findFirstBlackPixel(picture)

firstBlackPixelXLocation = pxlLocation[0]

firstBlackPixelYLocation = pxlLocation[1]

Any other?
12

Today

HW 4
Bailing out of loops using return
Drawing graphics
Review of everything!

13

Example picture
def littlepicture():
 canvas=makePicture(getMediaPath("640x480.jpg"))
 addText(canvas,10,50,"This is not a picture")
 addLine(canvas,10,20,300,50)
 addRectFilled(canvas,0,200,300,500,yellow)
 addRect(canvas,10,210,290,490)
 return canvas

Notice that these draw
outside the canvas without
giving an error !

Is this a bug or a feature?

Vector-based representations can be
smaller

Vector-based representations can be much smaller
than bit-mapped representations
Smaller means faster transmission (Flash and

Postscript)

If you want all the detail of a complex picture, no, it’s

not.

But vector-based has more value
than that
 Imagine that you’re editing a picture with lines on it.

 If you edit a bitmap image and extend a line, it’s just more bits.
 There’s no way to really realize that you’ve extended or shrunk the line.

 If you edit a vector-based image, it’s possible to just change the
specification
 Change the numbers saying where the line is
 Then it really is the same line

 That’s important when the picture drives the creation of the
product, like in automatic cutting machines

And another

def coolpic2():
 canvas=makePicture(getMediaPath("640x480.jpg"))
 for index in range(25,1,-1):
 addRect(canvas,index,index,index*3,index*4)
 addRect(canvas,100+index*4,100+index*3,index*8,index*10)
 show(canvas)
 return canvas

Why do we write programs?

Could we do this in Illustrator? Maybe
I’m sure that you can, but you need to know how.

Illustrator is probably better, but still need to learn.

Could I teach you to do this in Photoshop? Maybe
Might take a lot of demonstration

But this program is an exact definition of the
process of generating this picture
It works for anyone who can run the program, without

knowing Photoshop

We write programs to encapsulate
and communicate process

If you can do it by hand, do it.
If you need to teach someone else to do it, consider

a program.
If you need to explain to lots of people how to do it,

definitely use a program.
If you want lots of people to do it without having to

teach them something first, definitely use a
program.

Drawing Graphics

 Referring to individual pixels
by x,y location

 Drawing graphics by
changing lots of pixels

 Graphics functions that are
built in to JES

 Programmed graphics

- Each pixel knows its x,y position
- range() returns a list of
numbers (not pixels)
- we can use range() to define
which x,y pixels are interesting

- Works, but tedious & slow

- addText(), addRect(), etc.

-Vector graphics take less space
- & can be changed easily
-Really, small special graphics recipes
-Created by modifying canvas

Today

HW 4
Bailing out of loops using return
Drawing graphics
Review of everything!

21

Brief Review of Everything We’ve
Learned in the Last Month

What does this do?
And how does it work?

22

def function(picture):
 for pixel in getPixels(picture):
 setRed(pixel,0)

23

def function(picture):
 for pixel in getPixels(picture):
 setRed(pixel,0)

23Removes the red from every pixel

def function(picture):
 noRed = 0
 for pixel in getPixels(picture):

pxlGreen = getGreen(pixel)
pxlBlue = getblue(pixel)
newColor = makeColor(noRed, pxlGreen, pxlBlue)

 setColor(pixel, newColor)

24

def function(picture):
 noRed = 0
 for pixel in getPixels(picture):

pxlGreen = getGreen(pixel)
pxlBlue = getblue(pixel)
newColor = makeColor(noRed, pxlGreen, pxlBlue)

 setColor(pixel, newColor)

24

SAME THING -- MORE CODE
Removes the red from every pixel

def function(picture):
 for px in getPixels(picture):
 red=getRed(px)
 green=getGreen(px)
 blue=getBlue(px)
 negColor=makeColor(255-red,255-green,255-blue)
 setColor(px,negColor)

25

def function(picture):
 for px in getPixels(picture):
 red=getRed(px)
 green=getGreen(px)
 blue=getBlue(px)
 negColor=makeColor(255-red,255-green,255-blue)
 setColor(px,negColor)

25Turns every pixel to negative of self

def function(picture):
 for p in getPixels(picture):
 value = getRed(p)
 setRed(p, value * 0.5)

26

def function(picture):
 for p in getPixels(picture):
 value = getRed(p)
 setRed(p, value * 0.5)

26Decreases the red in every pixel by 1/2

def function(picture):
 for x in range(1, getWidth(picture)):
 for y in range(1, getHeight(picture)):
 px = getPixel(picture, x, y)
 value = getRed(px)
 setRed(px, value * 1.1)

27

def function(picture):
 for x in range(1, getWidth(picture)):
 for y in range(1, getHeight(picture)):
 px = getPixel(picture, x, y)
 value = getRed(px)
 setRed(px, value * 1.1)

27Increases the red from every pixel by 10%

def function():
 # Set up the source and target pictures
 barbf = getMediaPath("barbara.jpg")
 barb = makePicture(barbf)
 canvasf = getMediaPath("7inX95in.jpg")
 canvas = makePicture(canvasf)
 # Now, do the actual copying
 sourceX = 45
 for targetX in range(100,100+((200-45)/2)):
 sourceY = 25
 for targetY in range(100,100+((200-25)/2)):
 color = getColor(getPixel(barb,sourceX,sourceY))
 setColor(getPixel(canvas,targetX,targetY), color)
 sourceY = sourceY + 2
 sourceX = sourceX + 2
 show(barb)
 show(canvas)
 return canvas 28

def function():
 # Set up the source and target pictures
 barbf = getMediaPath("barbara.jpg")
 barb = makePicture(barbf)
 canvasf = getMediaPath("7inX95in.jpg")
 canvas = makePicture(canvasf)
 # Now, do the actual copying
 sourceX = 45
 for targetX in range(100,100+((200-45)/2)):
 sourceY = 25
 for targetY in range(100,100+((200-25)/2)):
 color = getColor(getPixel(barb,sourceX,sourceY))
 setColor(getPixel(canvas,targetX,targetY), color)
 sourceY = sourceY + 2
 sourceX = sourceX + 2
 show(barb)
 show(canvas)
 return canvas 28

Makes a new smaller picture of barb
by getting every other pixel

def function():
 # Set up the source and target pictures
 barbf=getMediaPath("barbara.jpg")
 barb = makePicture(barbf)
 canvasf = getMediaPath("7inX95in.jpg")
 canvas = makePicture(canvasf)
 # Now, do the actual copying
 sourceX = 45
 for targetX in range(100,100+((200-45)*2)):
 sourceY = 25
 for targetY in range(100,100+((200-25)*2)):
 color = getColor(getPixel(barb,int(sourceX),int(sourceY)))
 setColor(getPixel(canvas,targetX,targetY), color)
 sourceY = sourceY + 0.5
 sourceX = sourceX + 0.5
 show(barb)
 show(canvas)
 return canvas 29

def function():
 # Set up the source and target pictures
 barbf=getMediaPath("barbara.jpg")
 barb = makePicture(barbf)
 canvasf = getMediaPath("7inX95in.jpg")
 canvas = makePicture(canvasf)
 # Now, do the actual copying
 sourceX = 45
 for targetX in range(100,100+((200-45)*2)):
 sourceY = 25
 for targetY in range(100,100+((200-25)*2)):
 color = getColor(getPixel(barb,int(sourceX),int(sourceY)))
 setColor(getPixel(canvas,targetX,targetY), color)
 sourceY = sourceY + 0.5
 sourceX = sourceX + 0.5
 show(barb)
 show(canvas)
 return canvas 29

Makes a new larger picture of barb
by duplicating every pixel

def function(p1):
 for p2 in getPixels(p1):
 setRed(p2 ,0)
 return p1

30

def function(p1):
 for p2 in getPixels(p1):
 setRed(p2 ,0)
 return p1

30Removes the red from every pixel

def function(param1, param2) :
if (param1 < param2) :

return param1
else :

return param2

31

def function(param1, param2) :
if (param1 < param2) :

return param1
else :

return param2

31Return lesser parameter

def function(picture):
columns = 0
rows = 0

 for x in range(1, getWidth(picture)):
 columns = columns + 1

 for y in range(1, getHeight(picture)):
rows = rows + 1
pxl = getPixel(picture,x,y)
value = getRed(pxl)

 setRed(pxl, value * 0.5)
 print columns, rows

32

What does this do & what does this print?

def function(picture):
columns = 0
rows = 0

 for x in range(1, getWidth(picture)):
 columns = columns + 1

 for y in range(1, getHeight(picture)):
rows = rows + 1
pxl = getPixel(picture,x,y)
value = getRed(pxl)

 setRed(pxl, value * 0.5)
 print columns, rows

32# of columns processed (one less than total)

What does this do & what does this print?

def function(picture):
columns = 0
rows = 0

 for x in range(1, getWidth(picture)):
 columns = columns + 1

 for y in range(1, getHeight(picture)):
rows = rows + 1
pxl = getPixel(picture,x,y)
value = getRed(pxl)

 setRed(pxl, value * 0.5)
 print columns, rows

32# of (rows * columns) processed

What does this do & what does this print?

def function(variable1) :
variable1 = makePicture(variable1)
one = 4
four = 2
for variable3 in getPixels(variable1) :

if (getRed(variable3) < 127) :
variable4 = variable4 + four

else :
variable2 = variable2 + one

if (variable2 > variable4) :
return variable4

else :
return variable1

33

def function(variable1) :
variable1 = makePicture(variable1)
one = 4
four = 2
for variable3 in getPixels(variable1) :

if (getRed(variable3) < 127) :
variable4 = variable4 + four

else :
variable2 = variable2 + one

if (variable2 > variable4) :
return variable4

else :
return variable1

33Count pixels with less red, return count of ???

What was wrong with that last
function?
It returned two different kinds of things - a number

or a picture
if (variable2 > variable4) :

return variable4
 else :

return variable1

The variable names are not representative
variable1 is a filename then a picture
Variables “one” and “four” are misleading
Both variable2 and variable4 increment but are not

initialized. (This would prevent running.)
There are no comments 34

Study advice

Re-read the book
Try more of the recipes. Vary them.

Take chances

make mistakes

learn from them!

35

Coming Attractions
Wednesday

Exam 1 on visual progamming

multiple choice
write programs (list of functions provided)
closed book
closed computer

on-line study quiz

Friday
Tom Igoe @ 4:30 in Squires Studio Theater

Next Monday
read chapter 6

online quiz due 10:00 AM
36

