
CS 1124
Media Computation

Steve Harrison
Lecture 3.2 (September 10, 2008)

Today ...

Reflecting on Modularity ...
One and only one thing

Hierarchical decomposition

Modifying pixels in a range
mirroring

mirrorTemple

2

Questions on functions

How can we reuse variable names like picture in
both a function and in the Command Area?

Why do we write the functions like this? Would
other ways be just as good?

Is there such a thing as a better or worse function?
Why don’t we just build in calls to pickAFile and

makePicture?

Modularity heuristic: One and
only one thing
We write functions as we do to make them general

and reusable
Programmers hate to have to re-write something

they’ve written before

They write functions in a general way so that they can

be used in many circumstances.

What makes a function general and thus reusable?
A reusable function does One and Only One Thing

Compare these two programs
def makeSunset(picture):
 for p in getPixels(picture):
 value=getBlue(p)
 setBlue(p,value*0.7)
 value=getGreen(p)
 setGreen(p,value*0.7)

def makeSunset(picture):
 reduceBlue(picture)
 reduceGreen(picture)

def reduceBlue(picture):
 for p in getPixels(picture):
 value=getBlue(p)
 setBlue(p,value*0.7)

def reduceGreen(picture):
 for p in getPixels(picture):
 value=getGreen(p)
 setGreen(p,value*0.7)

Yes, they do exactly the
same thing!

makeSunset(somepict) has
the same effect in both cases

Observations on the new
makeSunset

It’s okay to have more than
one function in the same
Program Area (and file)

makeSunset in this one is
somewhat easier to read.
It’s clear what it does

“reduceBlue” and
“reduceGreen”

That’s important!

Programs are read by people, not computers!

def makeSunset(picture):
 reduceBlue(picture)
 reduceGreen(picture)

def reduceBlue(picture):
 for p in getPixels(picture):
 value=getBlue(p)
 setBlue(p,value*0.7)

def reduceGreen(picture):
 for p in getPixels(picture):
 value=getGreen(p)
 setGreen(p,value*0.7)

Considering variations

 We can only do this because
reduceBlue and reduceGreen, do
one and only one thing.

 If we put pickAFile and
makePicture in them, we’d have to
pick a file twice (better be the same
file), make the picture—then save
the picture so that the next one could
get it!

def makeSunset(picture):
 reduceBlue(picture)
 reduceGreen(picture)

def reduceBlue(picture):
 for p in getPixels(picture):
 value=getBlue(p)
 setBlue(p,value*0.7)

def reduceGreen(picture):
 for p in getPixels(picture):
 value=getGreen(p)
 setGreen(p,value*0.7)

Does makeSunset do one and only
one thing?

Yes, but it’s a higher-level, more abstract thing.
It’s built on lower-level one and only one thing

We call this hierarchical decomposition.
You have some thing that you want the computer to

do?

Redefine that thing in terms of smaller things

Repeat until you know how to write the smaller things

Then write the larger things in terms of the smaller

things.

Are all these pictures the same?

What if we use this like this in
the Command Area:

>>> file=pickAFile()
>>> picture=makePicture(file)
>>> makeSunset(picture)
>>> show(picture)

def makeSunset(picture):
 reduceBlue(picture)
 reduceGreen(picture)

def reduceBlue(picture):
 for p in getPixels(picture):
 value=getBlue(p)
 setBlue(p,value*0.7)

def reduceGreen(picture):
 for p in getPixels(picture):
 value=getGreen(p)
 setGreen(p,value*0.7)

What happens when we use a
function

 When we type in the Command Area
>>>makeSunset(picture)

Whatever object that is in the Command Area variable picture becomes the
value of the placeholder (input) variable picture in

 def makeSunset(picture):
 	 	 reduceBlue(picture)

 reduceGreen(picture)

makeSunset’s picture is then passed as input to reduceBlue and
reduceGreen, but their input variables are completely different from
makeSunset’s picture.
 For the life of the functions, they are the same values (picture

objects)

Names have contexts

 In natural language, the same word has different meanings
depending on context.
 Time flies like an arrow

 Fruit flies like a banana

 A function is its own context.
 Input variables (placeholders) take on the value of the input

values only for the life of the function
 Only while it’s executing

 Variables defined within a function also only exist within the
context of that function

 The context of a function is also called its scope

Input variables are placeholders

Think of the input variable as a placeholder
It takes the place of the input object

During the time that the function is executing, the
placeholder variable stands for the input object.

When we modify the placeholder by changing its
pixels with setRed, we actually change the input
object.

Input variables as placeholders
(example)

Imagine we have a
wedding computer

def marry(husband, wife):
	 sayVows(husband)
	 sayVows(wife)
	 pronounce(husband, wife)
	 kiss(husband, wife)

def sayVows(speaker):

 print “I, “ + speaker + “ blah blah”

def pronounce(man, woman):

 print “I now pronounce you…”

def kiss(p1, p2):
	 if p1 == p2:

 print “narcissism!”
	 if p1 <> p2:	

 print p1 + “ kisses “ + p2

So, how do we marry Ben and J.Lo?

Input variables as placeholders
(example)

Imagine we have a
wedding computer

def marry(husband, wife):
	 sayVows(husband)
	 sayVows(wife)
	 pronounce(husband, wife)
	 kiss(husband, wife)

def sayVows(speaker):

 print “I, “ + speaker + “ blah blah”

def pronounce(man, woman):

 print “I now pronounce you…”

def kiss(p1, p2):
	 if p1 == p2:

 print “narcissism!”
	 if p1 <> p2:	

 print p1 + “ kisses “ + p2

Input variables as placeholders
(example)

Imagine we have a
wedding computer

def marry(husband, wife):
	 sayVows(husband)
	 sayVows(wife)
	 pronounce(husband, wife)
	 kiss(husband, wife)

def sayVows(speaker):

 print “I, “ + speaker + “ blah blah”

def pronounce(man, woman):

 print “I now pronounce you…”

def kiss(p1, p2):
	 if p1 == p2:

 print “narcissism!”
	 if p1 <> p2:	

 print p1 + “ kisses “ + p2

Variables within functions stay
within functions
 The variable value in

decreaseRed is created within
the scope of decreaseRed
 That means that it only exists

while decreaseRed is executing

 If we tried to print value after
running decreaseRed, it would
work ONLY if we already had a
variable defined in the
Command Area
 The name value within

decreaseRed doesn’t exist
outside of that function

 We call that a local variable

def decreaseRed(picture):
 for p in getPixels(picture):
 value=getRed(p)
 setRed(p,value*0.5)

Writing real functions

Functions in the mathematics sense take input and
usually return output.
Like ord(character) or makePicture(file)

What if you create something inside a function that
you do want to get back to the Command Area?
You can return it.
We’ll talk more about return later—that’s how

functions output something

Consider these two functions

def decreaseRed(picture):
 for p in getPixels(picture):
 value=getRed(p)
 setRed(p,value*0.5)

def decreaseRed(picture, amount):
 for p in getPixels(picture):
 value=getRed(p)
 setRed(p,value*amount)

• First, it’s perfectly okay to have multiple inputs to a function.

• The new decreaseRed now takes an input of the multiplier for the
red value.

• decreaseRed(picture,0.5) would do the same thing

• decreaseRed(picture,1.25) would increase red 25%

Names are important

 This function should
probably be called
changeRed because
that’s what it does.

 Is it more general?
 Yes.

 But is it the one and
only one thing that you
need done?
 If not, then it may be

less understandable.
 You can be too general

def decreaseRed(picture, amount):
 for p in getPixels(picture):
 value=getRed(p)
 setRed(p,value*amount)

def changeRed(picture, amount):
 for p in getPixels(picture):
 value=getRed(p)
 setRed(p,value*amount)

Understandability comes first
 Consider these two functions

 They do the same thing!

 The first one looks like the
other increase/decrease
functions we’ve written.
 That may make it more

understandable for you to
write first.

 But later, it doesn’t make
much sense to you
 Why multiply by zero? The

result is always zero!
 Clearing is a special case of

decreasing, so a special
function is called for.

def clearBlue(pic):
 for p in getPixels(pic):
 setBlue(p,0)

def clearBlue(pic):
 for p in getPixels(pic):
 value = getBlue(p)
 setBlue(p,value*0)

Trying to be too general

Short and sweet, but specific

Understandability comes first
 A couple of other ways to

make it understandable
 “0” can sometimes be

mistaken for “O”
 so writing out “zero” would

remind you that you are
setting the value to 0

 calling the value “noBlue”
would reinforce the idea that
you are setting the value of
blue to 0 so that there is no
blue.

def clearBlue(pic):
 zero = 0
 for p in getPixels(pic):
 setBlue(p,zero)

def clearBlue(pic):
 noBlue = 0
 for p in getPixels(pic):
 setBlue(p,noBlue)

Steps to success heuristic: first make
the program easy to understand

 Write your functions so that you can understand them first
 Get your program running

 ONLY THEN should you try to make them better
 Make them more understandable to other people

 E.g. set to zero rather than multiply by zero
 Another programmer (or you in six months) may not remember or be

thinking about increase/decrease functions
 Make them more efficient

 The new version of makeSunset (I.e. the one with reduceBlue and
reduceGreen) takes twice as long as the first version, because it
changes all the pixels twice

 But it’s easier to understand and to get working in the first place

Today ...

Reflecting on Modularity ...
One and only one thing

Hierarchical decomposition

Modifying pixels in a range
mirroring

mirrorTemple

23

MirrorVertical

def mirrorVertical(source) :

mirrorPoint = getWidth(source) / 2

for y in range(1, getHeight(source)+1):

for xOffset in range(1, mirrorPoint):

pRight = getPixel(source, xOffset+mirrorPoint, y)

pLeft = getPixel(source, mirrorPoint-xOffset, y)

c = getColor(pLeft)

setColor(pRight, c)

24

Which side is seen and which side is covered up by the
mirroring effect?

Lets change mirrorVertical to
mirrorHorizontal
Transform

vertical -> horizontal

width -> height

height -> width

x -> y

y -> x

left -> upper

right -> lower

Since they look so similar is there a way to write a
single general function that would mirror either
horizontally or vertically? 25

Class projects

Mostly do in lab section and at home
Do in groups
Need some extra credit?

short report on “abstraction”

what is it?
What is relation of abstraction in art, poetry, math,

computer science?
show an example

post to forum

5 minute presentation in Lab with slides

worth ONE quiz 26

Coming Attractions

For Friday
Project 2 due

Extra credit reports on “abstraction” (OPTIONAL)

For Monday
(re)Read Chapter 4

quiz due 10:0 AM

27

