CS 1124
Media Computation

Steve Harrison
Lecture 3.2 (September 10,2008)

Today ...

m Reflecting on Modularity ...
One and only one thing

Hierarchical decomposition
B Modifying pixels in a range
mirroring

mirrorTemple

Questions on functions

®How can we reuse variable names like picture in
both a function and in the Command Area?

B Why do we write the functions like this? Would
other ways be just as good?

B [s there such a thing as a better or worse function?

B Why don’t we just build 1n calls to pickAFile and
makePicture?

Modularity heuristic: One and

only one thing

B We write functions as we do to make them general
and reusable

Programmers hate to have to re-write something
they’ve written before

They write functions in a general way so that they can
be used in many circumstances.

® What makes a function general and thus reusable?

A reusable function does One and Only One Thing

Compare these two programs

def makeSunset (picture): def makeSunset (picture):
for p in getPixels (picture): reduceBlue (picture)
value=getBlue (p) reduceGreen (picture)
setBlue (p,value *0.7)
value=getGreen(p) def reduceBlue (picture):
setGreen (p,value *0.7) for p in getPixels (picture):
value=getBlue (p)
Yes, they do exactly the setBlue (p,value*0.7)

g
same thing! def reduceGreen (picture):

makeSunset(somepict) has for p in getPixels(picture):

. lue=getGreen (p)
the same effect in both ve
e same effect in both cases setGreen (p,value*0.7)

Observations on the new

makeSunset
) def makeSunset(picture):
®]t’s okay to have more than reduceBlue(picture)
one function in the same reduceGreen(picture)
Program Area (and file
& . (.) def reduceBlue(picture):
B makeSunset 1n this one 1s for p in getPixels(picture):
somewhat easier to read. value=getBlue(p)
setBlue(p,value*0.7)
It’s clear what it does
“reduceBlue” and def reduceGreen(picture):
“reduceGreen” for p in getPixels(picture):

value=getGreen(p)

‘e i |
That’s important! setGreen(p,value*0.7)

Programs are read by people, not computers!

"
il

Considering variations

® We can only do this because def ma.keSunsep(picture):
reduceBlue(picture)
reduceBlue and l‘educeGl’een, dO reduceGreen(picture)

one and only one thing.
Y & def reduceBlue(picture):

m [f we put pickAFile and for p in getPixels(picture):
. .) value=getBlue
makePicture in them, we’d have to SetBlueg(p’vahff) 0.7
pick a file twice (better be the same
fil ke th . h def reduceGreen(picture):
1 e)a make the plcture—t €N save for p in getPixels(picture):

the picture so that the next one could value=getGreen(p)
ge tit! setGreen(p,value*0.7)

Does makeSunset do one and only
one thing?

B Yes, but 1t’s a higher-level, more abstract thing.

It’s built on lower-level one and only one thing

B We call this hierarchical decomposition.

You have some thing that you want the computer to
do?

Redefine that thing in terms of smaller things

Repeat until you know how to write the smaller things

Then write the larger things in terms of the smaller
things.

"
il

Are all these pictures the same?

® What if we use this like this in ¢ DakeBunset(pioture):

reduceBlue(picture)
the Command Area: reduceGreen(picture)
>>> ﬁle=plckAFlle() def reduceBlue(picture):
for p in getPixels(picture):
>>> picture=makePicture(file) value=getBlue(p)

setBlue(p,value*0.7)
== make SUIISCt(plCtU.I'C) def reduceGreen(picture):

. for p in getPixels(picture):
> ShOW(plCtU.I’C) va,lue=getGPeen((p)

setGreen(p,value*0.7)

" JE
What happens when we use a
function

® When we type in the Command Area
>>>makeSunset(picture)

Whatever object that is in the Command Area variable picture becomes the
value of the placeholder (input) variable picture in

def makeSunset(picture):
reduceBlue(picture)
reduceGreen(picture)

makeSunset’s picture is then passed as input to reduceBlue and
reduceGreen, but their input variables are completely different from
makeSunset’s picture.

For the life of the functions, they are the same values (picture
objects)

Names have contexts

® [n natural language, the same word has different meanings
depending on context.
Time flies like an arrow
Fruit flies like a banana

B A function 1s its own context.

Input variables (placeholders) take on the value of the input
values only for the life of the function

® Only while it’s executing

Variables defined within a function also only exist within the
context of that function

The context of a function is also called its scope

Input variables are placeholders

B Think of the input variable as a placeholder
It takes the place of the input object

B During the time that the function 1s executing, the
placeholder variable stands for the input object.

® When we modify the placeholder by changing its
pixels with setRed, we actually change the input
object.

Input variables as placeholders

(example)

®[magine we have a
wedding computer

def marry(husband, wife):
sayVows(husband)
sayVows(wife)
pronounce(husband, wife)
kiss(husband, wife)

def sayVows(speaker):
print “I, “ + speaker + “ blah blah”

def pronounce(man, woman):
print “I now pronounce you...”

def kiss(p1l, p2):
ifpl ==p&:
print “narcissism!”
ifpl <> p&:
print pl + “ kisses “ + p&

So, how do we marry Ben and J.Lo?

Input variables as placeholders

(example)

®[magine we have a
wedding computer

def marry(husband, wife):
sayVows(sban
sayVows(wi
pronoun e(husb d, wi
kiss(husband, wife)

def sayVows(speaker):
print “I, “ + speaker + “ blah blah”

def pronounce(man, woman):
print “I now pronounce you...”

def kiss(p1l, p2):
ifpl ==p&:
print “narcissism!”
ifpl <> p&:
print pl + “ kisses “ + p&

"
il

Input variables as placeholders

(example)

. def sayVows(speaker):
®[magine we have a

wedding computer

def marry(husband, wife):
sayVows(husban:
sayVows(wife .
print “narcissism!”
ifpl <> p&:
print pl + “ kisses “ + p&

pronounce(husb
kiss(husband, wife

Variables within functions stay
within functions

® The variable value in def decreaseRed (picture):
decreaseRed is created within for p in getPixels(picture):
the scope of decreaseRed value=getRed (p)
That means that it only exists setRed (p,value*0.5)

while decreaseRed is executing

B [f we tried to print value after
running decreaseRed, it would
work ONLY if we already had a
variable defined in the
Command Area

The name value within
decreaseRed doesn’t exist
outside of that function

We call that a local variable

Writing real functions

® Functions in the mathematics sense take input and
usually return output.

Like ord(character) or makePicture(file)

® What if you create something inside a function that
you do want to get back to the Command Area?
You can return it.

We’ll talk more about return later—that’s how
functions output something

Consider these two functions

def decreaseRed(picture): def decreaseRed(picture, amount):
for p in getPixels(picture): for p in getPixels(picture):
value=getRed(p) value=getRed(p)
setRed(p,value*0.5) setRed(p,value*amount)

e First, 1t’s perfectly okay to have multiple inputs to a function.

* The new decreaseRed now takes an input of the multiplier for the
red value.

e decreaseRed(picture,0.5) would do the same thing

e decreaseRed(picture,1.25) would increase red 25%

Names are important

® This function should def decreaseRed (picture, amount):
probably be called for p in getPixels (picture):
changeRed because value=getRed (p)
that’s what it does. setRed (p,value *amount)

® [s it more general?
Yes.

® But 1s it the one and
only one thing that you
need done?

If not, then it b .
|e:so J.,df,:'s{a,':f;’{,,e‘f def changeRed (picture, amount):

You can be too general for p in getPixels (picture):
value=getRed (p)

setRed (p,value *amount)

Understandability comes first

® Consider these two functions
They do the same thing!

B The first one looks like the
other increase/decrease
functions we’ve written.

That may make it more
understandable for you to
write first.

® But later, it doesn’t make

much sense to you

Why multiply by zero? The
result is always zero!
Clearing is a special case of

decreasing, so a special
function is called for.

def clearBlue (pic):
for p in getPixels (pic):
value = getBlue (p)
setBlue (p,value*0)

1

Trying to be too general

Short and sweet, but specific
def clearBlue (pic):
for p in getPixels (pic):
setBlue (p,0)

" J
Understandability comes first

® A couple of other ways to def clearBlue (pic):
make 1t understandable zero = 0
'O can somefimes be for p in getPixels (pic):
so writing out “zero” would setBlue (p,zero)

remind you that you are
setting the value to 0

calling the value “noBlue”
would reinforce the idea that

you are setting the value of .
blue to 0 so that there is no def clearBlue (pic):

blue. noBlue = 0
for p in getPixels (pic):
setBlue (p,noBlue)

" J
Steps to success heuristic: first make
the program easy to understand

® Write your functions so that you can understand them firs¢

Get your program running

® ONLY THEN should you try to make them better

Make them more understandable to other people
m E.g. set to zero rather than multiply by zero

® Another programmer (or you in six months) may not remember or be
thinking about increase/decrease functions

Make them more efficient
® The new version of makeSunset (I.c. the one with reduceBlue and

reduceGreen) takes twice as long as the first version, because it
changes all the pixels twice

® But 1t’s easier to understand and to get working in the first place

Today ...

m Reflecting on Modularity ...
One and only one thing

Hierarchical decomposition
B Modifying pixels in a range
mirroring

mirrorTemple

23

MirrorVertical

def mirrorVertical(source)
mirrorPoint = getWidth(source) / 2
for y in range(l, getHeight(source)+1l):
for xOffset in range(l, mirrorPoint):
pRight = getPixel(source, xOffset+mirrorPoint, y)
pLeft = getPixel(source, mirrorPoint-xOffset, y)
c = getColor(pLeft)
setColor (pRight, c)

®Which side 1s seen and which side is covered up by the
mirroring effect?

24

Lets change mirrorVertical to

mirrorHorizontal
B Transform

vertical -> horizontal
width -> height
height -> width
X=->Yy

y-> X

left -> upper

right -> lower

® Since they look so similar 1s there a way to write a
single general function that would mirror either
horizontally or vertically? 25

Class projects

B Mostly do 1n lab section and at home
B Do 1n groups
B Need some extra credit?
short report on “abstraction”
mwhat 1s 1t?

® What 1s relation of abstraction 1n art, poetry, math,
computer science?

mshow an example
post to forum
5 minute presentation in Lab with slides
worth ONE quiz

26

"
il

Coming Attractions

B For Friday

Project 2 due

Extra credit reports on “abstraction” (OPTIONAL)

B For Monday
(re)Read Chapter 4
quiz due 10:0 AM

27

