
CS 1124
Media Computation

Steve Harrison
Lecture 3.2 (September 10, 2008)

Today ...

Reflecting on Modularity ...
One and only one thing

Hierarchical decomposition

Modifying pixels in a range
mirroring

mirrorTemple

2

Questions on functions

How can we reuse variable names like picture in
both a function and in the Command Area?

Why do we write the functions like this? Would
other ways be just as good?

Is there such a thing as a better or worse function?
Why don’t we just build in calls to pickAFile and

makePicture?

Modularity heuristic: One and
only one thing
We write functions as we do to make them general

and reusable
Programmers hate to have to re-write something

they’ve written before

They write functions in a general way so that they can

be used in many circumstances.

What makes a function general and thus reusable?
A reusable function does One and Only One Thing

Compare these two programs
def makeSunset(picture):
 for p in getPixels(picture):
 value=getBlue(p)
 setBlue(p,value*0.7)
 value=getGreen(p)
 setGreen(p,value*0.7)

def makeSunset(picture):
 reduceBlue(picture)
 reduceGreen(picture)

def reduceBlue(picture):
 for p in getPixels(picture):
 value=getBlue(p)
 setBlue(p,value*0.7)

def reduceGreen(picture):
 for p in getPixels(picture):
 value=getGreen(p)
 setGreen(p,value*0.7)

Yes, they do exactly the
same thing!

makeSunset(somepict) has
the same effect in both cases

Observations on the new
makeSunset

It’s okay to have more than
one function in the same
Program Area (and file)

makeSunset in this one is
somewhat easier to read.
It’s clear what it does

“reduceBlue” and
“reduceGreen”

That’s important!

Programs are read by people, not computers!

def makeSunset(picture):
 reduceBlue(picture)
 reduceGreen(picture)

def reduceBlue(picture):
 for p in getPixels(picture):
 value=getBlue(p)
 setBlue(p,value*0.7)

def reduceGreen(picture):
 for p in getPixels(picture):
 value=getGreen(p)
 setGreen(p,value*0.7)

Considering variations

 We can only do this because
reduceBlue and reduceGreen, do
one and only one thing.

 If we put pickAFile and
makePicture in them, we’d have to
pick a file twice (better be the same
file), make the picture—then save
the picture so that the next one could
get it!

def makeSunset(picture):
 reduceBlue(picture)
 reduceGreen(picture)

def reduceBlue(picture):
 for p in getPixels(picture):
 value=getBlue(p)
 setBlue(p,value*0.7)

def reduceGreen(picture):
 for p in getPixels(picture):
 value=getGreen(p)
 setGreen(p,value*0.7)

Does makeSunset do one and only
one thing?

Yes, but it’s a higher-level, more abstract thing.
It’s built on lower-level one and only one thing

We call this hierarchical decomposition.
You have some thing that you want the computer to

do?

Redefine that thing in terms of smaller things

Repeat until you know how to write the smaller things

Then write the larger things in terms of the smaller

things.

Are all these pictures the same?

What if we use this like this in
the Command Area:

>>> file=pickAFile()
>>> picture=makePicture(file)
>>> makeSunset(picture)
>>> show(picture)

def makeSunset(picture):
 reduceBlue(picture)
 reduceGreen(picture)

def reduceBlue(picture):
 for p in getPixels(picture):
 value=getBlue(p)
 setBlue(p,value*0.7)

def reduceGreen(picture):
 for p in getPixels(picture):
 value=getGreen(p)
 setGreen(p,value*0.7)

What happens when we use a
function

 When we type in the Command Area
>>>makeSunset(picture)

Whatever object that is in the Command Area variable picture becomes the
value of the placeholder (input) variable picture in

 def makeSunset(picture):
 	 	 reduceBlue(picture)
 reduceGreen(picture)

makeSunset’s picture is then passed as input to reduceBlue and
reduceGreen, but their input variables are completely different from
makeSunset’s picture.
 For the life of the functions, they are the same values (picture

objects)

Names have contexts

 In natural language, the same word has different meanings
depending on context.
 Time flies like an arrow

 Fruit flies like a banana

 A function is its own context.
 Input variables (placeholders) take on the value of the input

values only for the life of the function
 Only while it’s executing

 Variables defined within a function also only exist within the
context of that function

 The context of a function is also called its scope

Input variables are placeholders

Think of the input variable as a placeholder
It takes the place of the input object

During the time that the function is executing, the
placeholder variable stands for the input object.

When we modify the placeholder by changing its
pixels with setRed, we actually change the input
object.

Input variables as placeholders
(example)

Imagine we have a
wedding computer

def marry(husband, wife):
	 sayVows(husband)
	 sayVows(wife)
	 pronounce(husband, wife)
	 kiss(husband, wife)

def sayVows(speaker):
 print “I, “ + speaker + “ blah blah”

def pronounce(man, woman):
 print “I now pronounce you…”

def kiss(p1, p2):
	 if p1 == p2:
 print “narcissism!”
	 if p1 <> p2:	
 print p1 + “ kisses “ + p2

So, how do we marry Ben and J.Lo?

Input variables as placeholders
(example)

Imagine we have a
wedding computer

def marry(husband, wife):
	 sayVows(husband)
	 sayVows(wife)
	 pronounce(husband, wife)
	 kiss(husband, wife)

def sayVows(speaker):
 print “I, “ + speaker + “ blah blah”

def pronounce(man, woman):
 print “I now pronounce you…”

def kiss(p1, p2):
	 if p1 == p2:
 print “narcissism!”
	 if p1 <> p2:	
 print p1 + “ kisses “ + p2

Input variables as placeholders
(example)

Imagine we have a
wedding computer

def marry(husband, wife):
	 sayVows(husband)
	 sayVows(wife)
	 pronounce(husband, wife)
	 kiss(husband, wife)

def sayVows(speaker):
 print “I, “ + speaker + “ blah blah”

def pronounce(man, woman):
 print “I now pronounce you…”

def kiss(p1, p2):
	 if p1 == p2:
 print “narcissism!”
	 if p1 <> p2:	
 print p1 + “ kisses “ + p2

Variables within functions stay
within functions
 The variable value in

decreaseRed is created within
the scope of decreaseRed
 That means that it only exists

while decreaseRed is executing

 If we tried to print value after
running decreaseRed, it would
work ONLY if we already had a
variable defined in the
Command Area
 The name value within

decreaseRed doesn’t exist
outside of that function

 We call that a local variable

def decreaseRed(picture):
 for p in getPixels(picture):
 value=getRed(p)
 setRed(p,value*0.5)

Writing real functions

Functions in the mathematics sense take input and
usually return output.
Like ord(character) or makePicture(file)

What if you create something inside a function that
you do want to get back to the Command Area?
You can return it.
We’ll talk more about return later—that’s how

functions output something

Consider these two functions

def decreaseRed(picture):
 for p in getPixels(picture):
 value=getRed(p)
 setRed(p,value*0.5)

def decreaseRed(picture, amount):
 for p in getPixels(picture):
 value=getRed(p)
 setRed(p,value*amount)

• First, it’s perfectly okay to have multiple inputs to a function.

• The new decreaseRed now takes an input of the multiplier for the
red value.

• decreaseRed(picture,0.5) would do the same thing

• decreaseRed(picture,1.25) would increase red 25%

Names are important

 This function should
probably be called
changeRed because
that’s what it does.

 Is it more general?
 Yes.

 But is it the one and
only one thing that you
need done?
 If not, then it may be

less understandable.
 You can be too general

def decreaseRed(picture, amount):
 for p in getPixels(picture):
 value=getRed(p)
 setRed(p,value*amount)

def changeRed(picture, amount):
 for p in getPixels(picture):
 value=getRed(p)
 setRed(p,value*amount)

Understandability comes first
 Consider these two functions

 They do the same thing!

 The first one looks like the
other increase/decrease
functions we’ve written.
 That may make it more

understandable for you to
write first.

 But later, it doesn’t make
much sense to you
 Why multiply by zero? The

result is always zero!
 Clearing is a special case of

decreasing, so a special
function is called for.

def clearBlue(pic):
 for p in getPixels(pic):
 setBlue(p,0)

def clearBlue(pic):
 for p in getPixels(pic):
 value = getBlue(p)
 setBlue(p,value*0)

Trying to be too general

Short and sweet, but specific

Understandability comes first
 A couple of other ways to

make it understandable
 “0” can sometimes be

mistaken for “O”
 so writing out “zero” would

remind you that you are
setting the value to 0

 calling the value “noBlue”
would reinforce the idea that
you are setting the value of
blue to 0 so that there is no
blue.

def clearBlue(pic):
 zero = 0
 for p in getPixels(pic):
 setBlue(p,zero)

def clearBlue(pic):
 noBlue = 0
 for p in getPixels(pic):
 setBlue(p,noBlue)

Steps to success heuristic: first make
the program easy to understand

 Write your functions so that you can understand them first
 Get your program running

 ONLY THEN should you try to make them better
 Make them more understandable to other people

 E.g. set to zero rather than multiply by zero
 Another programmer (or you in six months) may not remember or be

thinking about increase/decrease functions
 Make them more efficient

 The new version of makeSunset (I.e. the one with reduceBlue and
reduceGreen) takes twice as long as the first version, because it
changes all the pixels twice

 But it’s easier to understand and to get working in the first place

Today ...

Reflecting on Modularity ...
One and only one thing

Hierarchical decomposition

Modifying pixels in a range
mirroring

mirrorTemple

23

MirrorVertical

def mirrorVertical(source) :

mirrorPoint = getWidth(source) / 2

for y in range(1, getHeight(source)+1):

for xOffset in range(1, mirrorPoint):

pRight = getPixel(source, xOffset+mirrorPoint, y)

pLeft = getPixel(source, mirrorPoint-xOffset, y)

c = getColor(pLeft)

setColor(pRight, c)

24

Which side is seen and which side is covered up by the
mirroring effect?

Lets change mirrorVertical to
mirrorHorizontal
Transform

vertical -> horizontal

width -> height

height -> width

x -> y

y -> x

left -> upper

right -> lower

Since they look so similar is there a way to write a
single general function that would mirror either
horizontally or vertically? 25

Class projects

Mostly do in lab section and at home
Do in groups
Need some extra credit?

short report on “abstraction”

what is it?
What is relation of abstraction in art, poetry, math,

computer science?
show an example

post to forum

5 minute presentation in Lab with slides

worth ONE quiz 26

Coming Attractions

For Friday
Project 2 due

Extra credit reports on “abstraction” (OPTIONAL)

For Monday
(re)Read Chapter 4

quiz due 10:0 AM

27

