
CS 1124
Media Computation

Steve Harrison
Lecture 3.1 (September 8, 2008)

Today ...

Review of Project 1
One more thing about distance(color1, color2)
Ranges, sequences, matrixes, and indicies

range(start, oneMoreThanTheLastOne)

[] notation

what can you do with []?

Nested loops

2

Pay close attention:
Today we’ll have lots of “gotchas” that
can cause problems!

Project 1

Most people did a pretty good job
Many recognized that negative and grayscale could be

done in one loop

Others recognized that recipe could be made out of

other recipes

Most common problem:
def makeBandWNegative(file) :

file is the name of the file, not the picture in the file
so the next line should be:

picture = makePicture(file)

WHY?
3

Project 1

Most people did a pretty good job
Many recognized that negative and grayscale could be

done in one loop
def makeBandWNegative(file):
 picture = makePicture(file)
 for p in getPixels(picture):
 newRed = 255-getRed(p)
 newGreen = 255-getGreen(p)
 newBlue = 255-getBlue(p)
 negcolor = makeColor(newRed, newGreen, newBlue)
 setColor(p,negcolor)
 luminance = (getRed(p)+getGreen(p)+getBlue(p))/3.
 setColor(p,makeColor(luminance, luminance, luminance))
 show(picture)

4

Project 1

Most people did a pretty good job
Many recognized that negative and grayscale could be

done in one loop
def makeBandWNegative(file):
 picture = makePicture(file)
 for p in getPixels(picture):
 newRed = 255-getRed(p)
 newGreen = 255-getGreen(p)
 newBlue = 255-getBlue(p)
 negcolor = makeColor(newRed, newGreen, newBlue)
 setColor(p,negcolor)
 luminance = (getRed(p)+getGreen(p)+getBlue(p))/3.
 setColor(p,makeColor(luminance, luminance, luminance))
 show(picture)

5

Project 1

Most people did a pretty good job
Many recognized that negative and grayscale could be

done in one loop
def makeBandWNegative(file):
 picture = makePicture(file)
 for p in getPixels(picture):
 newRed = 255-getRed(p)
 newGreen = 255-getGreen(p)
 newBlue = 255-getBlue(p)
 luminance = (newRed+newGreen+newBlue(p))/3.
 setColor(p,makeColor(luminance, luminance, luminance))
 show(picture)

This idea is called “optimizing performance”
6

Project 1

Most people did a pretty good job
Many recognized that negative and grayscale could be

done in one loop

Others recognized that recipe could be made out of

other recipes

Most common problem:
def makeBandWNegative(file) :

file is the name of the file, not the picture in the file
so the next line should be:

picture = makePicture(file)

WHY?
7

Project 1
Most people did a pretty good job

Others recognized that recipe could be made out of

other recipes
def makeBandWNegative(file):
 picture=makePicture(file)
 negative(picture)
 grayScale(picture)
 show(picture)

def negative(picture):
 for pixelArray in getPixels(picture):

 red = getRed(pixelArray)

 green = getGreen(pixelArray)

 blue = getBlue(pixelArray)

 negColor=makeColor(255-red,255-green,255-blue)

 setColor(pixelArray,negColor)

def grayScale(picture): 8

This idea is called

“modularity”.

Project 1

Most people did a pretty good job
Many recognized that negative and grayscale could be

done in one loop

Others recognized that recipe could be made out of

other recipes

Most common problem:
def makeBandWNegative(file) :

file is the name of the file, not the picture in the file
so the next line should be:

picture = makePicture(file)

WHY?
9

More about comments

Some of you did not put in any comments - points
off

Some put # in first column, some followed indent
level - both are OK
def makeBandWNegative(fileName) :
create a picture to work with from the file
 picture = makePicture(fileName)
 # loop through each pixel in the picture
 for pxl in getPixels(picture)

And some put # following the code on the same line
def makeBandWNegative(fileName) :
 picture = makePicture(fileName) # create a picture to work with
 for pxl in getPixels(picture) # loop through each pixel in picture

10

Little bit extras...

Most read ahead in the book and tried things
THAT IS REALLY GREAT!

did comparative showing of picture, weighted

grayscale, replaced one color with another, gradient ...

11

Worried about grade?

Ways to make up...
extra credit opportunities in group project

Post your questions to the project forum
Come see us -- at least send e-mail

12

Distance as example of multiple

functions

So in the current recipe:
 def turnRed(file):

 brown = makeColor(57, 16, 8)
 ...
 return(picture)

def distance(color1, color2):
 redDiff = getRed(color1) - getRed(color2)

 ...
 return(picture)

13

Using distance

def turnRed(file):
 brown = makeColor(57, 16, 8)
 picture = makePicture(file)
 for px in getPixels(picture):
 color = getColor(px)
 if distance(color, brown) < 50.0:
 redness = getRed(px)*1.5
 setRed(px, redness)
 show(picture)
 return(picture)

Original:

Digital makeover:

distance(color1, color2)
It does the distance calculation:

 def distance(color1, color2):
 redDiff = getRed(color1) - getRed(color2)
 greenDiff = getGreen(color1) - getGreen(color2)
 blueDiff = getBlue(color1) - getBlue(color2)
 colorDistance = sqrt((redDiff*redDiff)+(greenDiff*greenDiff)+(blueDiff*blueDiff))

 return colorDistance

15

distance(color1, color2)
No need to define
It is built in

 def distance(color1, color2):
 redDiff = getRed(color1) - getRed(color2)
 greenDiff = getGreen(color1) - getGreen(color2)
 blueDiff = getBlue(color1) - getBlue(color2)
 colorDistance = sqrt((redDiff*redDiff)+(greenDiff*greenDiff)+(blueDiff*blueDiff))

 return colorDistance

16

Hey, its purple!

Today ...

Review of Project 1
One more thing about distance(color1, color2)
Ranges, sequences, matrixes, and indicies

range(start, oneMoreThanTheLastOne)

[] notation

what can you do with []?

Nested loops

17

Remember that pixels are in a matrix

Matrices have two dimensions: A height and a
width

We can reference any element in the matrix
with (x,y) or (horizontal, vertical)
We refer to those coordinates as index numbers or

indices

We sometimes want to know where a pixel is, and
getPixels doesn’t let us know that.

Tuning our color replacement

If you want to get more of Barb’s hair, just
increasing the threshold doesn’t work
Wood behind becomes within the threshold value

How could we do it better?
Lower our threshold, but then miss some of the hair

Work only within a range…

Introducing the function range

Range returns a sequence between its first two
inputs, possibly using a third input as the increment

>>> print range(1, 4)
[1, 2, 3]
>>> print range(-1, 3)
[-1, 0, 1, 2]
>>> print range(1, 10, 2)
[1, 3, 5, 7, 9] Bug Alert:

“range(start, oneMoreThanTheLastOne)”

That thing in [] is a sequence
>>> a=[1, 2, 3]
>>> print a
[1, 2, 3]
>>> a = a + 4
An attempt was made to call a
function with a parameter of an
invalid type
>>> a = a + [4]
>>> print a
[1, 2, 3, 4]
>>> a[0]
1

We can assign names to
sequences, print them,
add sequences, and
access individual pieces
of them.

We can also use for
loops to process each
element of a sequence.

We can use range to generate
index numbers

We’ll do this by working the range from 1 to
the height, and 1 to the width

But we’ll need more than one loop.
Each for loop can only change one variable,
and we need two for a matrix

Working the pixels by number

To use range, we’ll have to use nested loops
One to walk the width, the other to walk the height

def increaseRed2(picture):

 for x in range(1, getWidth(picture)+1):

 for y in range(1, getHeight(picture)+1):

 px = getPixel(picture, x, y)

 value = getRed(px)

 setRed(px, value * 1.1)

Bug Alert:
Be sure to watch your blocks carefully!

PAY CLOSE ATTENTION !!!!!!

Look at page 71 in the textbook
there are very similarly named functions that do

different things:
getPixel(picture, x, y) <> getPixels(picture)

getPixel returns the ONE pixel at that location

getPixels returns ALL the pixels in a picture

A simple rule of thumb is to re-read page 71 & 72 if
your recipe is not working as you expect.

“heuristic” is a term meaning “rule of thumb”24

What’s going on here?

def increaseRed2(picture):
 for x in range(1, getWidth(picture)+1):
 for y in range(1, getHeight(picture)+1):
 px = getPixel(picture, x, y)
 value = getRed(px)
 setRed(px, value * 1.1)

The first time
through the first
loop, x is the name
for 1.

We’ll be processing
the first column of
pixels in the picture.

(1, 1) (2, 1) (3, 1) (x, 1)

(1, 1) (2, 2) (3, 2) (x, 2)

(1, 3) (2, 3) (3, 3) (x, 3)

(1, y) (2, y) (3, y) (x, y)

Now, the inner loop

Next, we set y to 1.
We’re now going to
process each of the
pixels in column 1.

def increaseRed2(picture):
 for x in range(1, getWidth(picture)+1):
 for y in range(1, getHeight(picture)+1):
 px = getPixel(picture, x, y)
 value = getRed(px)
 setRed(px, value * 1.1)

(1, 1) (2, 1) (3, 1) (x, 1)

(1, 1) (2, 2) (3, 2) (x, 2)

(1, 3) (2, 3) (3, 3) (x, 3)

(1, y) (2, y) (3, y) (x, y)

Bug Alert:
The higher the y value, the
lower it is on the picture.
Corollary heuristic:
“Height” means “down”.

Process a pixel

With x = 1 and y = 1,
we get the leftmost
pixel and increase its
red by 10%

def increaseRed2(picture):
 for x in range(1, getWidth(picture)+1):
 for y in range(1, getHeight(picture)+1):
 px = getPixel(picture, x, y)
 value = getRed(px)
 setRed(px, value * 1.1)

(1, 1) (2, 1) (3, 1) (x, 1)

(1, 1) (2, 2) (3, 2) (x, 2)

(1, 3) (2, 3) (3, 3) (x, 3)

(1, y) (2, y) (3, y) (x, y)

Next pixel

Next we set y to 2 (next
value in the sequence
range(1, getHeight(picture)
+1)

def increaseRed2(picture):
 for x in range(1, getWidth(picture)+1):
 for y in range(1, getHeight(picture)+1):
 px = getPixel(picture, x, y)
 value = getRed(px)
 setRed(px, value * 1.1)

(1, 1) (2, 1) (3, 1) (x, 1)

(1, 1) (2, 2) (3, 2) (x, 2)

(1, 3) (2, 3) (3, 3) (x, 3)

(1, y) (2, y) (3, y) (x, y)

Process pixel (1,2)

x is still 1, and now y is
2, so increase the red
for pixel (1,2)

We continue along
this way, with y
taking on every value
from 1 to the height
of the picture.
(Remember, the
range runs to LESS
THAN the second
parameter.)

def increaseRed2(picture):
 for x in range(1, getWidth(picture)+1):
 for y in range(1, getHeight(picture)+1):
 px = getPixel(picture, x, y)
 value = getRed(px)
 setRed(px, value * 1.1)

(1, 1) (2, 1) (3, 1) (x, 1)

(1, 1) (2, 2) (3, 2) (x, 2)

(1, 3) (2, 3) (3, 3) (x, 3)

(1, y) (2, y) (3, y) (x, y)

Finally, next column

Now that we’re done with
the loop for y, we get back to
the for loop for x.

x now takes on the value 2,
and we go back to the y loop
to process all the pixels in
the column x=2.

def increaseRed2(picture):
 for x in range(1, getWidth(picture)+1):
 for y in range(1, getHeight(picture)+!):
 px = getPixel(picture, x, y)
 value = getRed(px)
 setRed(px, value * 1.1)

(1, 1) (2, 1) (3, 1) (x, 1)

(1, 1) (2, 2) (3, 2) (x, 2)

(1, 3) (2, 3) (3, 3) (x, 3)

(1, y) (2, y) (3, y) (x, y)

BTW There are a 0 row and 0
column in a picture

JES doesn’t use them for
picture elements that are
displayed.

Some JES functions use it
for special, hidden purposes.

(0, 0) (1, 0) (2, 0) (3, 0) (x, 0)

(0, 1) (1, 1) (2, 1) (3, 1) (x, 1)

(0, 2) (1, 1) (2, 2) (3, 2) (x, 2)

(0, 3) (1, 3) (2, 3) (3, 3) (x, 3)

(0, y) (1, y) (2, y) (3, y) (x, y)

>>> a=[1, 2, 3]
>>> a[0]
1

Remember how the sequence
example put its first element
at position 0 ?

Replacing colors
in a range

def turnRedInRange(file):
 brown = makeColor(57, 16, 8)
 picture = makePicture(file)
 for x in range(70, 168):
 for y in range(56, 190):
 px = getPixel(picture, x, y)
 color = getColor(px)
 if distance(color, brown) < 50.0:
 redness = getRed(px) * 1.5
 setRed(px, redness)
 show(picture)
 return(picture)

Get the range
using
MediaTools

Walking this code
 Like last time:

 Don’t need input parameters

 same color we want to change

 same file

 make a picture def turnRedInRange(file):
 brown = makeColor(57, 16, 8)
 picture = makePicture(file)
 for x in range(70, 168):
 for y in range(56, 190):
 px = getPixel(picture, x, y)
 color = getColor(px)
 if distance(color, brown) < 50.0:
 redness = getRed(px) * 1.5
 setRed(px, redness)
 show(picture)
 return(picture)

The nested loop

Used MediaTools to find the rectangle where most of
the hair is that we want to change

def turnRedInRange(file):
 brown = makeColor(57,16,8)
 picture = makePicture(file)
 for x in range(70, 168):
 for y in range(56, 190):
 px = getPixel(picture, x, y)
 color = getColor(px)
 if distance(color, brown) < 50.0:
 redness = getRed(px) * 1.5
 setRed(px, redness)
 show(picture)
 return(picture)

Scanning for brown hair

def turnRedInRange():
 brown = makeColor(57, 16, 8)
 picture = makePicture(file)
 for x in range(70, 168):
 for y in range(56, 190):
 px = getPixel(picture, x, y)
 color = getColor(px)
 if distance(color, brown) < 50.0:
 redness = getRed(px) * 1.5
 setRed(px, redness)
 show(picture)
 return(picture)

We’re looking for a close-match on hair color, and
increasing the redness

Similar to scanning whole picture

We could raise threshold now.
(Why?…)

Could we do this without
nested loops?

Yes, but only with
a complicated if
statement

Less than optimal
performance.
Why?

Moral:
Nested loops are
common for 2D
data

def turnRedInRange2(file):
 brown = makeColor(57, 16, 8)
 picture = makePicture(file)
 for p in getPixels(picture):
 x = getX(p)
 y = getY(p)
 if x >= 70 and x < 168:
 if y >=56 and y < 190:
 color = getColor(p)
 if distance(color, brown) < 100.0:
 redness = getRed(p) * 2.0
 setRed(p, redness)
 show(picture)
 return picture

Moving pixels across pictures

 We’ve seen using index variables to track the pixel position we’re
working with in a picture.

 We can copy between pictures, if we keep track of:
 The source index variables

 Where we’re getting the pixels from
 The target index variables

 Where we’re putting the pixels at
 (Not really copying the pixels: Replicating their color.)

Questions?

38

Today ...

Review of Project 1
One more thing about distance(color1, color2)
Ranges, sequences, matrixes, and indicies

range(start, oneMoreThanTheLastOne)

[] notation

what can you do with []?

Nested loops

39

Bug Alerts:
-“range(start, oneMoreThanTheLastOne)”
- Be sure to watch your blocks carefully!
- The higher the y value, the lower it is on the picture.

Coming Attractions

GTA Matt Schaefer is away this week, so make an
appointment with Bobby Beaton
<rbeaton@vt.edu>if you have questions or need
help.

For Friday
Project 2 Due

For Monday
(re)Read Chapter 4

Quiz 4 due 10:00 AM

40

