
CS 1124

Media Computation

Lecture 2.2

Steve Harrison
September 3, 2008

1

Much of programming is about
naming
We name our data

Data: The “numbers” we manipulate

We call our names for data variables
We name our recipes
Quality of names determined much as in

Philosophy or Math
Enough words to describe what you need to describe

Understandable

Our programs work with
a variety of names
You will name your functions

Just like functions you knew in math, like sine and gcd
(Greatest Common Divisor)

You will name your data (variables)
You will name the data that your functions work on

Inputs, like the 90 in sine(90)

Key: Names inside a function only have meaning
while the function is being executed by the
computer. (You’ll see what we mean.)

Types: Naming our Encodings

We even name our encodings
Sometimes referred to as types

Some programming languages are strongly typed
A name has to be declared to have a type, before any

data is associated with it

Python is NOT strongly typed

Some types are:
integers

text

real numbers

pixels

Names for things that are not
in memory
 A common name that you’ll deal with is a file name

 The program that deals with those is called the operating
system, like Windows, MacOS, Linux

 A file is a collection of bytes, with a name, that resides on
some external medium, like a hard disk.
 Think of it as a whole bunch of space where you can put your

bytes

 Files are typed, typically with three letter extensions
 .jpg files are JPEG (pictures), .wav are WAV (sounds)

Names can be (nearly)
whatever we want
 Must start with a letter (but can contain numerals)
 Can’t contain spaces

 myPicture is okay but my Picture is not

 Be careful not to use command names as your own names
 print = 1 won’t work

 (Avoid names that appear in the editor pane of JES highlighted in blue
or purple)

 Case matters
 MyPicture is not the same as myPicture or mypicture

 Sensible names are sensible
 E.g. myPicture is a good name for a picture, but not for a picture file.

 x could be a good name for an x-coordinate in a picture, but probably
not for anything else

JES Functions

A bunch of functions are pre-defined in JES for
sound and picture manipulations
pickAFile()

makePicture()

makeSound()

show()

play()

Some of these functions accept input values

theFile = pickAFile()

pic = makePicture(theFile)

Picture Functions

makePicture(filename) creates and returns a
picture object, from the JPEG file at the filename

show(picture) displays a picture in a window
We’ll learn functions for manipulating pictures

later, like getColor, setColor, and repaint

Sound Functions

makeSound(filename) creates and returns a sound
object, from the WAV file at the filename

play(sound) makes the sound play
but doesn’t wait until it’s done

blockingPlay(sound) waits for the sound to finish

We’ll learn more later like getSample and
setSample

COMPLETELY THE SAME:
Values, names for those values,
functions that return those values

>>> file=pickAFile()
>>> print file
C:\Documents and Settings\Mark Guzdial\My Documents

\mediasources\barbara.jpg
>>> show(makePicture(file))
>>> show(makePicture(r"C:\Documents and Settings\Mark

Guzdial\My Documents\mediasources\barbara.jpg"))
>>> show(makePicture(pickAFile()))
 Put r in front of Windows filenames:

r“C:\mediasources\pic.jpg”

Names are “scoped”

def pickAndShow():

 myfile = pickAFile()

 mypicture = makePicture(myfile)

 show(mypicture)

Names are “scoped”

def pickAndShow():

 myfile = pickAFile()

 mypicture = makePicture(myfile)

 show(mypicture)

Bug alert!!!

myfile and mysound, inside pickAndPlay(), are completely
different from the same names in the command area.

Side effects vs. returning a result
def negative(picture):
 for px in getPixels(picture):
 red = getRed(px)
 green = getGreen(px)
 blue = getBlue(px)
 negColor = makeColor(255-red, 255-green, 255-blue)
 setColor(px, negColor)

Side effects vs. returning a result

What would happen if we typed ?
 >>> show(negative(picture))

def negative(picture):
 for px in getPixels(picture):
 red = getRed(px)
 green = getGreen(px)
 blue = getBlue(px)
 negColor = makeColor(255-red, 255-green, 255-blue)
 setColor(px, negColor)

Side effects vs. returning a result

What would happen if we typed ?
 >>> show(negative(picture))

What would we need to do make it show the negative
picture?
 return the thing we want to be the result

 in this case the result should be the parameter called “picture

def negative(picture):
 for px in getPixels(picture):
 red = getRed(px)
 green = getGreen(px)
 blue = getBlue(px)
 negColor = makeColor(255-red, 255-green, 255-blue)
 setColor(px, negColor)

Side effects vs. returning a result

What would happen if we typed ?
 >>> show(negative(picture))

What would we need to do make it show the negative
picture?
 return the thing we want to be the result

 in this case the result should be the parameter called “picture

Lets write that....

def negative(picture):
 for px in getPixels(picture):
 red = getRed(px)
 green = getGreen(px)
 blue = getBlue(px)
 negColor = makeColor(255-red, 255-green, 255-blue)
 setColor(px, negColor)

Side effect

>>> myPicture = makePicture(file)
>>> negative(myPicture)
>>> show(myPicture)

>>> show(picture)

def negative(picture):
 for px in getPixels(picture):
 red = getRed(px)
 green = getGreen(px)
 blue = getBlue(px)
 negColor = makeColor(255-red, 255-green, 255-blue)
 setColor(px, negColor)

def negative(picture):
 for px in getPixels(picture):
 red = getRed(px)
 green = getGreen(px)
 blue = getBlue(px)
 negColor = makeColor(255-red, 255-green, 255-blue)
 setColor(px, negColor)

Returning a result

>>> myPicture = makePicture(file)
>>> negPicture = negative(myPicture)
>>> show(negPicture)

def negative(picture):
 for px in getPixels(picture):
 red = getRed(px)
 green = getGreen(px)
 blue = getBlue(px)
 negColor = makeColor(255-red, 255-green, 255-blue)
 setColor(px, negColor)

Returning a result

>>> myPicture = makePicture(file)
>>> negPicture = negative(myPicture)
>>> show(negPicture)

return (picture)

negColor = makeColor(255-red, 255-green, 255-blue)
 setColor(px, negColor)

 return(picture)

Returning from a function

At the end, we return the picture
Why are we using return?

 If we didn’t return it, we couldn’t get at it in the command area

So we can’t give the results of a function a name unless
we return it.
 We use the returned value by giving it a name, that is by

assigning it to a variable. For example, negPicture =
negative(myPicture)

def negative(file):
picture = makePicture(file)

 for px in getPixels(picture):
 red = getRed(px)
 green = getGreen(px)
 blue = getBlue(px)
 negColor = makeColor(255-red, 255-green, 255-blue)
 setColor(px, negColor)

Returning a result (more)

>>> negPicture = negative(file)
>>> show(negPicture)

def negative(file):
picture = makePicture(file)

 for px in getPixels(picture):
 red = getRed(px)
 green = getGreen(px)
 blue = getBlue(px)
 negColor = makeColor(255-red, 255-green, 255-blue)
 setColor(px, negColor)

Returning a result (more)

>>> negPicture = negative(file)
>>> show(negPicture)

return (picture)

negColor = makeColor(255-red, 255-green, 255-blue)
 setColor(px, negColor)

 return(picture)

 In this case we must use return
Why?

 Because we created “picture” inside the function and variable
names are scoped -- they only work INSIDE the function

Returning a result (more)

Lets do a simple name-
space exercise

• Thanks for volunteering

Lets do a simple name-
space exercise

 def negative(picture):
for px in getPixels(picture):
 red = getRed(px)
 green = getGreen(px)
 blue = getBlue(px)
 negColor = makeColor(255-red, 255-green, 255-blue)
 setColor(px, negColor)

>>> file = pickAFile()
>>> picture = makePicture(file)
>>> negative(picture)
>>> show(picture)

>>> show(picture)

 def negative(picture):
for px in getPixels(picture):
 red = getRed(px)
 green = getGreen(px)
 blue = getBlue(px)
 negColor = makeColor(255-red, 255-green, 255-blue)
 setColor(px, negColor)

Lets do a simple name-
space exercise

>>> file = pickAFile()
>>> myPicture = makePicture(file)
>>> negPicture = negative(myPicture)
>>> show(negPicture)
>>> show(picture)

 def negative(picture):
for px in getPixels(picture):
 red = getRed(px)
 green = getGreen(px)
 blue = getBlue(px)
 negColor = makeColor(255-red, 255-green, 255-blue)
 setColor(px, negColor)

Lets do a simple name-
space exercise

>>> file = pickAFile()
>>> myPicture = makePicture(file)
>>> negPicture = negative(myPicture)
>>> show(negPicture)
>>> show(picture)

return (picture)

Lets do a simple name-
space exercise

• Thanks for volunteering

“Hard-coding” for a specific
sound or picture

def playSound():

 myfile = "FILENAME"

 mysound = makeSound(myfile)

 play(mysound)

def showPicture():

 myfile = "FILENAME"

 mypict = makePicture(myfile)

 show(mypict)

You can always replace
data (a string of
characters, a
number…. whatever)
with a name (variable)
that holds that data

…. or vice versa.

Q: This works, but can you see
its disadvantage?

Functions with inputs are more
general-purpose
def playNamed(myfile):

 mysound = makeSound(myfile)

 play(mysound)

def showNamed(myfile):

 mypict = makePicture(myfile)

 show(mypict)

Q: What functions do you
need?

Q: What (if any) should be
their input(s)?

A: In general, have
enough functions to do
what you want, easily,
understandably, and in
the fewest commands

(i.e. by using more generic,
less specific functions)

But these are only questions of style

What can go wrong?

 Did you use the exact same names (case, spelling)?
 All the lines in the block must be indented,

and indented the same amount.
 Variables in the command area don’t exist in your functions,

and variables in your functions don’t exist in the command
area.

 The computer can’t read your mind.
 It will only do exactly what you tell it to do.

Programming is a craft

 You don’t learn to write, paint, or knit by attending knitting
lectures and watching others knit.
 You learn to knit by doing it.

 Programming is much the same.
 You have to try it, make many mistakes, learn how to control

the computer, learn how to think in Python.

 The HW and group project programs that you have to write
in this class aren’t enough!
 Do programming on your own!

Review: Converting to grayscale

def grayscale(picture):
 for p in getPixels(picture):
 sum = getRed(p) + getGreen(p) + getBlue(p)
 intensity = sum / 3
 setColor(p, makeColor(intensity, intensity, intensity))

Review: Converting to grayscale

 We know that if red=green=blue, we get gray
 But what value do we set all three to?

 What we need is a value representing the darkness of the color,
the luminance

 There are many ways, but one way that works reasonably well is
dirt simple—simply take the average:

def grayscale(picture):
 for p in getPixels(picture):
 sum = getRed(p) + getGreen(p) + getBlue(p)
 intensity = sum / 3
 setColor(p, makeColor(intensity, intensity, intensity))

Converting to grayscale is different from computing a
negative.
 A negative transformation retains information.

With grayscale, we’ve lost information
 We no longer know what the ratios are between the reds, the

greens, and the blues

 We no longer know any particular value.

Why can’t we get back again?

Media compressions are one kind of transformation.
 Some are lossless (like negative);
 Others are lossy (like grayscale)

Converting to grayscale is different from computing a
negative.

 A negative transformation retains information.

With grayscale, we’ve lost information
 We no longer know what the ratios are between the reds, the

greens, and the blues

 We no longer know any particular value.

Why can’t we get back again?

Media compressions are one kind of transformation.
 Some are lossless (like negative);
 Others are lossy (like grayscale)

But that’s not really the best grayscale

 In reality, we don’t perceive red, green, and blue as equal
in their amount of luminance: How bright (or non-bright)
something is.
 We tend to see blue as “darker” and red as “brighter”

 Even if, physically, the same amount of light is coming off of
each

Photoshop’s grayscale is very nice: Very similar to the
way that our eye sees it
 B&W TV’s are also pretty good

Building a better grayscale

We’ll weight red, green, and blue based on how light we
perceive them to be, based on laboratory experiments.

def grayScaleNew(picture):
 for px in getPixels(picture):
 newRed = getRed(px) * 0.299
 newGreen = getGreen(px) * 0.587
 newBlue = getBlue(px) * 0.114
 luminance = newRed + newGreen + newBlue
 setColor(px, makeColor(luminance, luminance, luminance))

Let’s try making Barbara a redhead!

We could just try increasing the
redness, but as we’ve seen, that has
problems.
 Overriding some red spots

 And that’s more than just her hair

 If only we could increase the redness
only of the brown areas of Barb’s
head…

..../MediaSources/barbara.jpg

Treating pixels differently

We can use the if statement to treat some pixels
differently.

For example, color replacement: Turning Barbara into a
redhead
 Use the MediaTools to find the RGB values for the brown of

Barbara’s hair

 Then look for pixels that are close to that color (within a
threshold), and increase by 50% the redness in those

Find the RGB of
the brown color

How “close” are two colors?
 Sometimes you need to find the distance between two colors, e.g., when deciding if

something is a “close enough” match
 How do we measure distance?

 Pretend it’s Cartesian coordinate system

 Distance between two points:

 Distance between two colors:
 This is a case where the figure of speech “distance between colors” actually is a

mathematical function!

distance(color1, color2)
 It does the distance calculation:

 def distance(color1, color2):

 redDiff = getRed(color1) - getRed(color2)

 greenDiff = getGreen(color1) - getGreen(color2)

 blueDiff = getBlue(color1) - getBlue(color2)

 colorDistance = sqrt((redDiff*redDiff)+(greenDiff*greenDiff)+(blueDiff*blueDiff))

 return colorDistance

33

Making Barb a redhead

def turnRed(file):
 brown = makeColor(57, 16, 8)
 picture = makePicture(file)
 for px in getPixels(picture):
 color = getColor(px)
 if distance(color, brown) < 50.0:
 redness = getRed(px)*1.5
 setRed(px, redness)
 show(picture)
 return(picture)

Original:

Digital makeover:

Talking through the program slowly

 The brown is the brownness that figured out from
MediaTools

 The file is where the picture of Barbara is on the computer
 We need the picture to work with

def turnRed(file):
 brown = makeColor(57, 16, 8)
 picture = makePicture(file)
 for px in getPixels(picture):
 color = getColor(px)
 if distance(color, brown) < 50.0:
 redness = getRed(px)*1.5
 setRed(px, redness)
 show(picture)
 return(picture)

def turnRed(file):
 brown = makeColor(57, 16, 8)
 picture = makePicture(file)
 for px in getPixels(picture):
 color = getColor(px)
 if distance(color, brown) < 50.0:
 redness=getRed(px)*1.5
 setRed(px, redness)
 show(picture)
 return(picture)

Walking through the for loop
 Now, for each pixel px in the picture, we

 Get the color

 See if it’s within a distance of 50 from the brown we want to make
more red

 If so, increase the redness by 50%

How an if works
 if is the command name
 Next comes an expression: Some

kind of true or false comparison
 Then a colon

 Then the body of the if—the things
that will happen if the expression is
true is a block

if distance(color, brown) < 50.0:
 redness = getRed(px)*1.5
 blueness = getBlue(px)
 greenness = getGreen(px)

Expressions

Can test equality with ==
Can also test <, >, >=, <=, <> (not equals)
 In general, 0 is false, 1 is true

 So you can have a function return a “true” or “false” value.

Bug alert!

= means “assign the results to this
variable” (and does NOT work
with “if”)

== means “are they equal?”

if distance(color, brown) < 50.0:
 redness = getRed(px)*1.5
 setRed(px, redness)
 show(picture)
 return(picture)

Returning from a function

At the end, we show and return the picture
Why are we using return?

 Because the picture is created within the function

 If we didn’t return it, we couldn’t get at it in the command area

We could print the result, but we’d more likely assign it
a name

Things to change

Lower the threshold to get more pixels
 But if it’s too low, you start messing with the wood behind her

 Increase the amount of redness
 But if you go too high, you can go beyond the range of valid

color intensities (i.e. more than 255)

Grabbing media from the Web

 Right-click (Windows) or
Control-Click (Mac)

 Save Target As…
 Can only do JPEG images

(.jpe, .jpg, .jpeg)

Most images on the Internet
are copyright. You can
download and use them for
your use only without
permission.

Lots of ideas today

Names
 return from a function
Side-effects
Programming as craft
Grayscale

 why it looses information

 better looking grayscale

 color “distance”
 the “if” statement

42

Questions?

43

Project 2
Specification - FIVE variations of Lane Stadium:

 reduce red by 50%

 reduce blue by 40%

 reduce green by 30%

 makeSunset (page 62)

 posterize(page 105)

Lagniappe (“A Little Bit Extra”) - variation 6
 do any of the above for 1/2 of the picture. There are many ways

to define “1/2 of the picture”. (Think about it...)

 # tell us what you did so we will know!

Details on moodle

44

https://moodle.cs.vt.edu/mod/assignment/view.php?id=4479
https://moodle.cs.vt.edu/mod/assignment/view.php?id=4479

On September 5, 2008

OPEN HOUSE!

CENTER FOR HUMAN COMPUTER INTERACTION

• Come meet our CHCI faculty and students.

• See demonstrations of ongoing projects and find out how you can
participate.

• Come to view our resources: labs, equipment.

• Join us for refreshments, information and FUN!

o Opening welcome at 4pm in #1110 KW II

o Research Demonstrations

o Refreshments at 5pm

Date: September 5, 2008

Time: 4pm – 5pm

Location: 2202 Kraft Dr.

(In the Corporate Research Center – Knowledge Works II /

first floor, room # 1110

www.hci.vt.edu

www.hvi.vt.edu)

Coming Attractions

For Friday
 Project 1 due @ 2:00

 start on Project 2

 shortened lab

 HCI Center Open House @ 4:00 PM

For Monday
 Read Chapter 4 (through at least 4.3)

 Do Quiz 4 (due 10:00 am)

Next Friday
 Project 2 Due

46

