
CS 2984
Media Computation

Steve Harrison
Lecture 2.1 (September 1, 2008)

We perceive light different from
how it actually is
 Color is continuous

 Visible light is in the wavelengths between 370 and 730
nanometers
 That’s 0.00000037 and 0.00000073 meters

 But we perceive light with color sensors that peak around
425 nm (blue), 550 nm (green), and 560 nm (red).

 Our brain figures out which color is which by figuring out how much of
each kind of sensor is responding

 One implication: We perceive two kinds of “orange” — one that’s
spectral and one that’s red+yellow (hits our color sensors just right)

 Dogs and other simpler animals have only two kinds of sensors
 They do see color. Just less color.

Luminance vs. Color

 We perceive borders of things,
motion, depth via luminance
 Luminance is not the amount

of light, but our perception of
the amount of light.

 We see blue as “darker” than
red, even if same amount of
light.

 Much of our luminance
perception is based on
comparison to backgrounds, not
raw values.

Luminance is actually
color blind. Completely
different part of the brain.

Digitizing pictures as bunches of
little dots
We digitize pictures into lots of little dots
Enough dots and it looks like a continuous whole to

our eye
Our eye has limited resolution

Our background/depth acuity is particularly low

Each picture element is referred to as a pixel

from Friday: The
Wooden Mirror

• Video

• How
does it
work?

• Color ?

• Look up
“DLP”

http://www.youtube.com/watch?v=HCSbk9JDwPY
http://www.youtube.com/watch?v=HCSbk9JDwPY

Pixels

Pixels are picture elements
Each pixel object knows its color

It also knows where it is in its picture

A Picture is a matrix of pixels

 It’s not a continuous line of
elements, that is, an array

 A picture has two
dimensions: Width and
Height

 We need a two-dimensional
array: a matrix

Just the upper left hand
corner of a matrix.

Referencing a matrix

 We talk about positions in a
matrix as (x,y), or
(horizontal, vertical)

 location (1,1) is the upper
left corner

 Element (2,1) in the matrix
at left is the value 12

 Element (1,3) is 6

Encoding color

 Each pixel encodes color at that position in the picture
 Lots of encodings for color

 Printers use CMYK: Cyan, Magenta, Yellow, and blacK.

 Others use HSB for Hue, Saturation, and Brightness (also called
HSV for Hue, Saturation, and Brightness

 We’ll use the most common for computers
 RGB: Red, Green, Blue

RGB

 In RGB, each color has three
component colors:
 Amount of redness

 Amount of greenness

 Amount of blueness

 Each does appear as a separate
dot on most devices, but our eye
blends them.

 In most computer-based models
of RGB, a single byte (8 bits) is
used for each
 So a complete RGB color is 24

bits, 8 bits of each

How much can we encode in 8
bits?
 Let’s walk it through.

 If we have one bit, we can represent two patterns:
0 and 1.

 If we have two bits, we can represent four patterns:
00, 01, 10, and 11.

 If we have three bits, we can represent eight patterns: 000, 001,
010, 011, 100, 101, 110, 111

 General rule: In n bits, we can have 2n patterns
 In 8 bits, we can have 28 patterns, or 256

 If we make one pattern 0, then the highest value we can
represent is 28-1, or 255

 Thus the range is from 0 to 255

How much can we encode in 8
bits?
 Let’s walk it through.

 If we have one bit, we can represent two patterns:
0 and 1.

 If we have two bits, we can represent four patterns:
00, 01, 10, and 11.

 If we have three bits, we can represent eight patterns: 000, 001,
010, 011, 100, 101, 110, 111

 General rule: In n bits, we can have 2n patterns
 In 8 bits, we can have 28 patterns, or 256

 If we make one pattern 0, then the highest value we can
represent is 28-1, or 255

 Thus the range is from 0 to 255

How much can we encode in 8
bits?
 Let’s walk it through.

 If we have one bit, we can represent two patterns:
0 and 1.

 If we have two bits, we can represent four patterns:
00, 01, 10, and 11.

 If we have three bits, we can represent eight patterns: 000, 001,
010, 011, 100, 101, 110, 111

 General rule: In n bits, we can have 2n patterns
 In 8 bits, we can have 28 patterns, or 256

 If we make one pattern 0, then the highest value we can
represent is 28-1, or 255

 Thus the range is from 0 to 255

Encoding RGB

 Each component color (red,
green, and blue) is encoded as a
single byte

 Colors go from (0,0,0) to
(255,255,255)
 If all three components are the

same, the color is in greyscale
 (50,50,50) at (2,2)

 (0,0,0) (at position (1,2) in
example) is black

 (255,255,255) is white

Encoding RGB

 Each component color (red,
green, and blue) is encoded as a
single byte

 Colors go from (0,0,0) to
(255,255,255)
 If all three components are the

same, the color is in greyscale
 (50,50,50) at (2,2)

 (0,0,0) (at position (1,2) in
example) is black

 (255,255,255) is white

1 1 1 1 1 1 1 11 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

= 255 = 255

= 255

Encoding RGB

 Each component color (red,
green, and blue) is encoded as a
single byte

 Colors go from (0,0,0) to
(255,255,255)
 If all three components are the

same, the color is in greyscale
 (50,50,50) at (2,2)

 (0,0,0) (at position (1,2) in
example) is black

 (255,255,255) is white

Another way to say 255...

Some of you might have seen colors represented in
hexadecimal: red = “ff”

Its the same thing as 255
3 bits can represent 0 to 7
4 bits can represent 0 to 15

And one byte is 8 bits which divides evenly into two

groups of 4 bits

We then need a numbering system that goes from 0 to

16: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f

Hexadecimal means “base 16”
13

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

Is that enough?

We’re representing color in 24 (3 * 8) bits.
That’s 16,777,216 (224) possible colors

Our eye can discern millions of colors, so it’s probably
pretty close

But the real limitation is the physical devices: We don’t
get 16 million colors out of a monitor

Some graphics systems support 32 bits per pixel
May be more pixels for color, or an additional 8 bits to

represent 256 levels of translucence

Size of images

320 x 240
image

640 x 480
image

1024 x 768
monitor

24 bit color 1,843,200
bytes

7,372,800
bytes

18,874,368
bytes

32 bit color 2,457,600
bytes

9,830,400
bytes

25,165,824
bytes

Reminder: Manipulating Pictures

>>> file=pickAFile()
>>> print file
/Users/guzdial/mediasources/barbara.jpg
>>> picture=makePicture(file)
>>> show(picture)
>>> print picture
Picture, filename /Users/guzdial/mediasources/barbara.jpg
height 294 width 222

What’s a “picture”?

An encoding that represents an image
Knows its height and width

Knows its filename

Knows its window if it’s opened (via show and

repainted with repaint)

Manipulating pixels

>>> pixel=getPixel(picture,1,1)
>>> print pixel
Pixel, color=color r=168 g=131 b=105
>>> pixels=getPixels(picture)
>>> print pixels[0]
Pixel, color=color r=168 g=131 b=105

getPixel(picture,x,y) gets a single pixel.

getPixels(picture) gets all of them in an array.
(Square brackets is a standard array reference
notation—which we’ll generally not use.)

What can we do with a

pixel?
• getRed, getGreen, and getBlue are
functions that take a pixel as input and
return a value between 0 and 255

• setRed, setGreen, and setBlue are
functions that take a pixel as input and a
value between 0 and 255

We can also get, set, and
make Colors
 getColor takes a pixel as input and returns a Color object

with the color at that pixel
 setColor takes a pixel as input and a Color, then sets the

pixel to that color
 makeColor takes red, green, and blue values (in that order)

between 0 and 255, and returns a Color object
 pickAColor lets you use a color chooser and returns the

chosen color
 We also have functions that can makeLighter and

makeDarker an input color

Demonstrating: Manipulating
Colors
>>> print getRed(pixel)
168
>>> setRed(pixel,255)
>>> print getRed(pixel)
255
>>> color=getColor(pixel)
>>> print color
color r=255 g=131 b=105
>>> setColor(pixel,color)
>>> newColor=makeColor(0,100,0)
>>> print newColor
color r=0 g=100 b=0
>>> setColor(pixel,newColor)
>>> print getColor(pixel)
color r=0 g=100 b=0

>>> print color
color r=81 g=63 b=51
>>> print newcolor
color r=255 g=51 b=51
>>> print distance(color,newcolor)
174.41330224498358
>>> print color
color r=168 g=131 b=105
>>> print makeDarker(color)
color r=117 g=91 b=73
>>> print color
color r=117 g=91 b=73
>>> newcolor=pickAColor()
>>> print newcolor
color r=255 g=51 b=51

We can change pixels directly…

>>> file="/Users/guzdial/mediasources/barbara.jpg"
>>> pict=makePicture(file)
>>> show(pict)
>>> setColor(getPixel(pict,10,100),yellow)
>>> setColor(getPixel(pict,11,100),yellow)
>>> setColor(getPixel(pict,12,100),yellow)
>>> setColor(getPixel(pict,13,100),yellow)
>>> repaint(pict)

But that’s really dull and boring…
That’s the subject of the next lecture

Use a loop!
Our first picture recipe

def decreaseRed(picture):
 for p in getPixels(picture):
 value=getRed(p)
 setRed(p,value*0.5)

Used like this:
>>> file=pickAFile() <--- barbara.jpg
>>> picture=makePicture(file)
>>> show(picture)
>>> decreaseRed(picture)
>>> repaint(picture)

Once we make it work for one
picture, it will work for any picture

Think about what we just did

 Did we change the program
at all?

 Did it work for all the
different examples?

 What was the input variable
picture each time, then?
 It was the value of whatever

picture we provided as input!

def decreaseRed(picture):
 for p in getPixels(picture):
 value=getRed(p)
 setRed(p,value*0.5)

Read it as a Recipe

def decreaseRed(pict):
 for p in getPixels(pict):
 value=getRed(p)
 setRed(p,value*0.5)

Read it as a Recipe

 Recipe: To decrease the red

def decreaseRed(pict):
 for p in getPixels(pict):
 value=getRed(p)
 setRed(p,value*0.5)

Read it as a Recipe

 Recipe: To decrease the red
 Ingredients: One picture, name it pict

def decreaseRed(pict):
 for p in getPixels(pict):
 value=getRed(p)
 setRed(p,value*0.5)

Read it as a Recipe

 Recipe: To decrease the red
 Ingredients: One picture, name it pict
 Step 1: Get all the pixels of pict. For each pixel p in the

pixels…

def decreaseRed(pict):
 for p in getPixels(pict):
 value=getRed(p)
 setRed(p,value*0.5)

Read it as a Recipe

 Recipe: To decrease the red
 Ingredients: One picture, name it pict
 Step 1: Get all the pixels of pict. For each pixel p in the

pixels…
 Step 2: Get the value of the red of pixel p, and set it to 50%

of its original value

def decreaseRed(pict):
 for p in getPixels(pict):
 value=getRed(p)
 setRed(p,value*0.5)

Let’s use something with known red
to manipulate: Santa Claus

What if you decrease Santa’s red
again and again and again…?

>>> file=pickAFile()
>>> pic=makePicture(file)
>>> decreaseRed(pic)
>>> show(pic)
(That’s the first one)
>>> decreaseRed(pic)
>>> repaint(pic)
(That’s the second)

Increasing Red

def increaseRed(picture):
 for p in getPixels(picture):
 value=getRed(p)
 setRed(p,value*1.2)

What happened here?!?

Remember that the limit
for redness is 255.

If you go beyond 255, all
kinds of weird things can
happen

How does increaseRed differ from
decreaseRed?

Well, it does increase rather than decrease red, but
other than that…
It takes the same input

It can also work for any picture

It’s a specification of a process that’ll work for any picture
There’s nothing specific to a specific picture here.

Clearing Blue

def clearBlue(picture):
 for p in getPixels(picture):
 setBlue(p,0)

Again, this will work for any
picture.

Try stepping through this one
yourself!

Creating a negative

Let’s think it through
R,G,B go from 0 to 255

Let’s say Red is 10. That’s very light red.

What’s the opposite? LOTS of Red!
The negative of that would be 245: 255-10

So, for each pixel, if we negate each color
component in creating a new color, we negate the
whole picture.

Recipe for creating a negative

def negative(picture):
 for px in getPixels(picture):
 red=getRed(px)
 green=getGreen(px)
 blue=getBlue(px)
 negColor=makeColor(255-red, 255-green, 255-blue)
 setColor(px,negColor)

Original, negative, negative-negative

Converting to greyscale

 We know that if red=green=blue, we get grey
 But what value do we set all three to?

 What we need is a value representing the darkness of the
color, the luminance

 There are lots of ways of getting it, but one way that works
reasonably well is dirt simple—simply take the average:

Converting to greyscale

def greyScale(picture):
 for p in getPixels(picture):
 intensity = (getRed(p)+getGreen(p)+getBlue(p))/3
 setColor(p,makeColor(intensity,intensity,intensity))

Can we get back again?
Nope

Converting to greyscale is different than computing
a negative.
A negative transformation retains information.

With greyscale, we’ve lost information
We no longer know what the ratios are between the

reds, the greens, and the blues

We no longer know any particular value.

A comment about Comments

Starting a line with a “#” makes jython ignore the
rest of the line

Comments are good -- in fact, essential -- to
understanding a program

Use them to explain what is happening, what a
variable is supposed to have in it, etc.

38

Coming attractions

• Project 1 (on website for last week)
• makeBandWNegative(aFileName)
• due Friday @ 2:00 PM

• about “langiappe” (a little bit extra)
• must tell us! (# use a comment)

