CS 1124 MEDIA COMPUTATION

16.2 DECEMBER 10, 2008 STEVE HARRISON

Exercises

- Create a DizzyTurtle class
 - That turns a bit to the left and goes forward when asked to go forward
 - And turns a bit to the right and goes backward when asked to go backward
- Create a SlowTurtle class
 - That only goes forward and backward by 50 instead of 100 if you don't tell it how much to go forward or backward
- Create a StubbornTurtle class
 Has a 50% chance of doing what you ask

- A brief review
 - Python
 - Java (compared with Python)
- Next Steps
- Survey
- Course Evaluation

- A brief review
 - Python
 - Java (compared with Python)
- Next Steps
- Survey
- Course Evaluation

PYTHON

Scaling pictures
Sound
Scaling sound is frequency shifting
Recursion

PROBLEMS

Scaling pictures
Sound
Scaling sound is frequency shifting
Recursion

Scaling

- Scaling a picture (smaller or larger) has to do with sampling the source picture differently
 - □ When we just copy, we sample every pixel
 - If we want a smaller copy, we skip some pixels
 - •We *sample* fewer pixels
 - If we want a larger copy, we duplicate some pixels
 - •We over-sample some pixels

Scaling the picture down

def copyPictureHalfAsBig(file): # Set up the source and target pictures pic = makePicture(file) canvasFile = getMediaPath("7inX95in.jpg") canvas = makePicture(canvasFile) # Now, do the actual copying sourceX = 45for targetX in range(100,100+((200-45)/2)): sourceY = 25for targetY in range(100,100+((200-25)/2)): color = getColor(getPixel(pic,sourceX,sourceY)) setColor(getPixel(canvas,targetX,targetY), color) sourceY = sourceY + 2sourceX = sourceX + 2show(pic) show(canvas) return canvas

>>> barbFile = pickAFile() >>> setMediaPath() >>> smallPic = copyPictureHalfAsBig(barbFile)

PROBLEMS

Scaling pictures Sound Scaling sound is frequency shifting

Recursion

How sound works: Acoustics, the physics of sound

- Sounds are waves of air pressure
 - Sound comes in cycles
 - The frequency of a wave is the number of cycles per second (cps), or Hertz
 - (Complex sounds have more than one frequency in them.)
 - The amplitude is the maximum height of the wave

Sine wave

recipe 70 -A period = T = 1/2**def** sineWave(freq, amplitude) : (a) Sine Wave mySound = getMediaPath("sec1silence.wav") buildSin = makeSound(mySound) sr = getSamplingRate(buildSin) # sampling rate interval = 1.0 / freq **#** interval of sample samplesPerCycle = interval * sr # samples / cycle maxCycle = 2 * pi for pos in range(1, getLength(buildSin) + 1) : rawSample = sin((pos / samplesPerCycle) * maxCycle) sampleVal = int(amplitude * rawSample) setSampleValueAt(buildSin, pos, sampleVal) return buildSin


```
i = 1
```

```
for s in range( 1, getLength( square ) + 1 ) :
```

```
if (i > samplesPerHalfCycle):
  sampleVal = sampleVal * -1
  \mathbf{i} = \mathbf{0}
```

```
setSampleValueAt( square,s, sampleVal )
i = i + 1
```

return square

Triangluar wave

recipe 73, modified

def triangleWave(freq) :
 amplitude = 6000

samplingRate = 22050

sampling rate

seconds = 1

```
Triangle Signal(t)
```

triangle = makeEmptySound(seconds) # create a sound object (the book uses "sec1silence.wav")
interval = 1.0 * seconds / freq # interval of sample
samplesPerCycle = interval * samplingRate # samples / cycle
samplesPerHalfCycle = int(samplesPerCycle / 2)
increment = int(amplitude / samplesPerHalfCycle)
sampleVal = -amplitude
i = 1
for s in range(1, samplingRate + 1) :
 if (i > samplesPerCycle):
 increment = increment * -1
 i = 0
 sampleVal = sampleVal + increment
setSampleVal = sampleVal + increment
setSampleVal = sampleVal + increment
i = i + 1

return triangle

Adding

recipe 71 (part 2)

def addSounds(sound1, sound2) :

for index in range(1, getLength(sound1) + 1) :

- s1Sample = getSampleValueAt(sound1, index)
- s2Sample = getSampleValueAt(sound2, index)

setSampleValueAt(sound2, index, s1Sample + s2Sample)
return sound2

Echo, echo, echo, echo, echo

recipe 64

```
def echoes( soundFile, delay, num ) :
 s1 = makeSound( soundFile )
 ends1 = getLength(s1)
 ends2 = ends1 + (delay - num)
 s2 = makeEmptySound(1 + int(ends2 / getSamplingRate(s1)))
 echoAmplitude = 1.0
 for echoCount in range( 1, num + 1 ) :
  echoAmplitude = echoAmplitude * 0.6
                                        # each echo is 60% of previous
  for posn1 in range( 1, ends1 ) :
   posn2 = posn1 + (delay* echoCount)
   values1 = getSampleValueAt( s1, posn1) * echoAmplitude
   values2 = getSampleValueAt( s2, posn2)
   setSampleValueAt( s2, posn2, values1 + values2 )
 return s2
```

PROBLEMS

Scaling pictures
Sound
Scaling sound is frequency shifting
Recursion

Shifting the frequency

```
recipe 68, modified
```

how sampling keyboards work....

```
def shift( soundFile, factor ) :
    source = makeSound( soundFile )
    target = makeSound( soundFile )
    sourceIndex = 1
    sourceLength = getLength( source )
```

```
for targetIndex in range( 1, sourceLength + 1 ) :
    setSampleValueAt( target, targetIndex, getSampleValueAt( source, int( sourceIndex )))
    sourceIndex = sourceIndex + factor
    if sourceIndex > sourceLength :
        sourceIndex = 1
```

return target

PROBLEMS

Scaling pictures
Sound
Scaling sound is frequency shifting
Recursion

A very powerful idea: Recursion

- Recursion is writing functions that call *themselves*.
- When you write a recursive function, you write (at least) two pieces:
 - What to do if the input is the smallest possible datum,
 - □What to do if the input is larger so that you:
 - (a) process one piece of the data (the "head")
 - (b) call the function to deal with the rest. ("rest")

Factorial -- the classic recursive function

def factorial(number) :

if number == 1:

return number

else :

return number * factorial(number - 1.0)

- A brief review
 - Python
 - Java (compared with Python)
- Next Steps
- Survey
- Course Evaluation

PRE-JAVA: JAVASCRIPT

• Hey, remember that stuff we used to make HTML do stuff?

JavaScript vs. Python

	Python	Javascript
write code	JES	text editor
interpret/ execute	JES	browser (IE, Firefox,)
context	execute in command area	in HTML only
variables	just use	declare
blocks	":" + indent	"{" + "}"
termination	new line	66 . 33 3

JavaScript vs. Python

- JavaScript's syntax is much like other programming languages.
- JavaScript can't do everything that Python can.
- Python is a more full-featured programming language.
- But Python can't be embedded inside of HTML.
 - Well, not cross-platform. It can on Windows with a Python plugin for your browser.)

JAVA COMPARED

• Be sure to review the lecture sides!

Python vs. Javascript vs. Java

	Python	Javascript	Java
compile or interpret ?	interpret	interpret	compile
by ?	JES	browser	DrJava
develop & debug in?	JES	text editor - no debugger	DrJava
Command line test?	>>>		code view
performance	slow	not an issue	fast
	Note: there are other Python and Java environments. Later Java course will probably use "Eclipse". 26		

Syntax and Appearance

	Python	Javascript	Java
end of line of code?	new line	" " " 2	" " " 7
blocks defined	indentation: <tab> or <spaces></spaces></tab>	{ }	{ }
appearance	wide	like HTML: messy, wide, & tall	tall 27

Variable rules

	Python	Javascript	Java
declare?	no	yes	yes
declaration examples		var x; var x = 10;	int x; int x = 10;
scoping	by class or global	w/in enclosing block	w/in enclosing block
can contain "." ?	all use "dot" notation to refer to a method in a class so "." is NOT allowed in a name.		
			28

Functions, Classes, Methods

	Python	Javascript	Java
Functions?	yes	yes	sort of
functional programing	yes	not exactly	no
Classes	allowed, but not required	required, mostly built-in ("document")	required
Methods	allowed, but not required	required	required
Object- oriented	supported	yes	yes 29

More syntax

	Python	Javascript	Java
use of "="	varName =	flexible	flexible
		var varName =	type varName = expression
		expression	Class varNam = expression
++ /	allowed	often used	often used
Uniqueness of variable	var, class, function(), method() overlay	var, class, method, method(params) are different	var, class, method, method(params) are different
name		class = consMethod	class = consMethod 30

Even more objects & methods

	Python	Javascript	Java
defining a Class	class ClassNam(ofClass) :	public class ClassNam { }	public class ClassNam { }
constructor	defINITClass(self, arguments) :	public ClassNam() { }	public ClassNam() { }
polymorphism	all support inheritance and polymorphism so that special methods w/ same name can be created for each class		
bottom-up	pretty good	good	not so good
top-down	OK, but keep it simple	not so good	better 31

Loops Compared

	Java	Python
For each	for (Pixel pxlObj: pixlArray) { }	for pxl in getPixel(pic):
For index in range	for (int i=0; i < pixelArray.length; i++) { }	for i in range(0, getLength(pic)+1):
For index in range for source & target	for (int sX=0, tX = 0; sX < pixelArray.length; sX++, tX++) { }	tX = 0 for sX in range(0,getLength(pic)+1): tX = tX+1

Python & Java similarities

swapBackground & chromakey	Java	Python	
overall structure	name, init, loop(s)		
loop structure nested			
algorithm	swapBackground: test each pixel to see if same as background only, replace with new background chromakey: test each pixel to see if green+red < blue, replace with new background		

Python & Java differences

swapBackground & chromakey	Java	Python
where	methods in class Picture	not defined as method
arguments	(background, newBackground)	(source, background, newBackground)
return result ?	operate on "this" object	return changed source
syntax	declare variables for loops blocks in curly braces { }	no type declaration for loops blocks indented

JAVA ON THE FINAL

- Take Home Portion
 - Java problem: LeaderTurtle & FollowerTurtle
 - due on Dec 17, @ 2:00 PM
- In 316 McBryde (our regular room) Dec 17, 4:25-6:25
 - Be sure JES works!
 - open book, open computer

TAKE HOME FINAL

- Java Turtle problem
- Create two new kinds of turtles, LeaderTurtles and FollowerTurtles
- FollowerTurtles move whenever Leaders move
- detailed instructions to be posted on website on Thursday

- A brief review
 - Python
 - Java (compared with Python)
- Next Steps
- Survey
- Course Evaluation

ADVISING

• So this course was kinda cool ...

- in CS:
 - Soon: Make an appointment with CS advisors in McBryde
 - "Creative Computing Track"
- out of CS:
 - Computer Music & Multimedia Design (MUS)
 - New Media Theory (A&AH)
 - "Cyberart Studio" (CS, A&AH, ???)

CREATIVE COMPUTING

Basic CS BS program plus: CS Courses:

- GUI Programming (new course)
- Multimedia / Hypertext (CS 3624)
- CyberArt or Game Design capstone (cs 4644)

• Electives:

- CS 4204 Computer Graphics
- CS 4634 Design of Information
- CS 4804 Intro to AI

- MUS 4??? Computer music & multimedia design
- Art 4804 New Media Theory
- Art 2704 Intro to 3D Animation *
- Art 3704 Topics in 3D Animation*
- Com 2054 Introduction to Film
- Com 3194 Film Production
- Com 4014 Media Effects
- Com 4034 Functions of Popular Culture

Coming Attractions

- HW 10 oche
 - -due on Thursday
 - -look at Python echo recipe
 - what is different?
- Thursday (2-3 PM) in 110 McB
 - -Open House
 - –Learn about game design, animation, multimedia, cyberart –FOOD !
- Final, Wednesday 12.17 4:25-6:25 in 316 McBryde

- A brief review
 - Python
 - Java (compared with Python)
- Next Steps
- Survey
- Course Evaluation

THANKYOU!

You've been a great class. Good luck on the final.

- A brief review
 - Python
 - Java (compared with Python)
- Next Steps
- Survey
- Course Evaluation

COURSE OBJECTIVES

- Learn fundamental manipulations of digital media.
- Learn basic software engineering principles and programming skills.
- Simple data types, control structures, array and string data structures and algorithms, testing and debugging.