
Media Computation
Lecture 16.1, December 8, 2008

Steve Harrison

based on slides by Barb Ericson,
Georgia Institute of Technology

Today -- Details of Creating Classes

• From requirements to classes
• Creating a class that will simulate a number game
• Practice going from requirements to class definitions and fields

declarations
• Random number generators
• Using an import statement to allow you to use a short name

• Creating Classes
• Hierarchy

2

Based on slides by Barb Ericson,
Georgia Institute of Technology

Simulating a Number Guess Game

• Have you ever played the pick a number
from 1-10 or 1-100 game?
–One person randomly picks a number in the

specified range
–The other person guesses a number
–The person who picked the number replies

• Higher if the guess is too low
• Lower if the guess is too high
• Or that is right if the guess is the picked number

–You could also track the number of guesses

Based on slides by Barb Ericson,
Georgia Institute of Technology

What do we need?
• We need a new class. For each game we will

create a new object of this class.
–It will need to know the minimum number that it can pick

from
–It will need to know the maximum number that it can

pick from
–It will need to pick a number in that range
–It will need to ask the user for a guess and compare the

guess to the picked number
• And reply higher, lower, or that is right when the guess matches

the picked number
–It will need to keep track of how many guesses have

been made

Based on slides by Barb Ericson,
Georgia Institute of Technology

Going from Specifications to a Class

• What should the name of the class be?
–Class names should be singular
–Class names should be an indicator of what

objects of the class are for or can do
–Class names start with an uppercase letter and

uppercase the first letter of each new word
• Any ideas?

Based on slides by Barb Ericson,
Georgia Institute of Technology

Create the NumberGuessGame Class
• Start by creating a new class in DrJava

–Select (Untitled) in the Files pane or
–Click on the “New” button in the menu bar

• Type the following in the definitions pane in DrJava
public class NumberGuessGame
{
}

• Save it in NumberGuessGame.java
• Compile it using the “Compile All” button

–Which creates NumberGuessGame.class

Based on slides by Barb Ericson,
Georgia Institute of Technology

Going from Specifications to Fields

• What fields (state) does each object of the
NumberGuessGame need to have?
–What names should we use for these?
–What should the types be for the fields?

• Requirements
–minimum number that it can pick from
–maximum number that it can pick to
–Picked number for a game
–Track how many guesses have been made

Based on slides by Barb Ericson,
Georgia Institute of Technology

Add Field Declarations
• Declaring fields

–Each field should be private
–You can assign a value to a field when you declare it

• Each number guess game should have
–A minimum number

private int minNumber = 1;
–A maximum number

private int maxNumber = 100;
–A picked number

private int pickedNumber;
–A number of guesses so far

private int numGuesses = 0;

Based on slides by Barb Ericson,
Georgia Institute of Technology

Add the Fields

• Edit NumberGuessGame and add the fields
public class NumberGuessGame
{
 /////////// fields (data) /////////
 private int minNumber = 1;
 private int maxNumber = 100;
 private int pickedNumber;
 private int numGuesses = 0;
}

Based on slides by Barb Ericson,
Georgia Institute of Technology

Picking a Random Number
• There is a class in Java that allows you to pick a

pseudo random number
–java.util.Random
–You will want to import this class to use the short name

import java.util.Random; // before the class definition

• You can create an object of this class
	 Random randomNumGen = new Random();

• You can get a random number from 0 to one less
than a specified integer

int randomNum = randomNumGen.nextInt(specifiedInt);

Based on slides by Barb Ericson,
Georgia Institute of Technology

Picking from a Min to a Max
• If the Random class returns from 0 to 1 less than a

specified integer
– How do we pick from the minimum to the maximum?

• No matter what the minimum and maximum are?
– To pick a number from 1 to 10

• This is 10 values
– so pick from 0 to 10 (returns 0 to 9)
– And add 1 to the result (results in 1 to 10)

– To pick a number from 11 to 15
• This is 5 values

– So pick from 0 to 5 (returns 0 to 4)
– Add 11 to the result (results in 11 to 15)

– To pick in any range

 int numValues = this.maxNumber – this.minNumber + 1;

this.pickedNumber = this.randomNumGen(numValues);
this.pickedNumber = this.pickedNumber + this.minNumber;

Based on slides by Barb Ericson,
Georgia Institute of Technology

Add an Import and a Field

• Add the import statement before the class
declaration

import java.util.Random;
public class NumberGuessGame

• Add the new field for the random number
generator

private int numGuesses = 0;
private Random randomNumGen = new

Random();

Based on slides by Barb Ericson,
Georgia Institute of Technology

Creating Constructors

• Constructors actually initialize the new object
–Usually set field values for the object

• If the user doesn’t specify a min and max
number
–Use the defaults and pick a random number

between the min and max
• Add another constructor that let’s the user

specify the min and max

Based on slides by Barb Ericson,
Georgia Institute of Technology

Declaring Constructors

• To declare a constructor
–Specify the visibility and the name of the class

followed by a parameter list
 public ClassName(parameterList)

• You can declare more than one constructor
–As long as the parameter lists are different
 public NumberGuessGame()
	 	 public NumberGuessGame(int min, int max)

Based on slides by Barb Ericson,
Georgia Institute of Technology

No Argument Constructor
 /**
 * Constructor that takes no parameters
 * It uses the default min and max
 */
 public NumberGuessGame()
 {
 int numValues = this.maxNumber - this.minNumber + 1;
 this.pickedNumber =
 this.randomNumGen.nextInt(numValues);
 this.pickedNumber = this.pickedNumber +
 this.minNumber;
 }

Based on slides by Barb Ericson,
Georgia Institute of Technology

Constructor with a Min and Max
 /**
 * Constructor that takes a min and max
 * It uses the passed min and max
 * @param min the minimum number in the range
 * @param max the maximum number in the range
 */
 public NumberGuessGame(int min, int max)
 {
 this.minNumber = min;
 this.maxNumber = max;
 int numValues = this.maxNumber - this.minNumber + 1;
 this.pickedNumber = this.randomNumGen.nextInt(numValues);
 this.pickedNumber = this.pickedNumber + this.minNumber;
 }

Based on slides by Barb Ericson,
Georgia Institute of Technology

Summary
• To look for classes

– Underline nouns
• Nouns with several pieces of data associated with them are classes

• First determine the classes you will need and create them
• Then determine the data each object of that class will

need
– And declare fields

• The Random class in package java.util
– Can be used to pick a random number

• You can use an import statement
– To let you use a short name for a class that isn’t in java.lang

based on slides by Barb Ericson,
Georgia Institute of Technology

Today -- Details of Creating Classes

• From requirements to classes
• Methods

– Pulling out a method
• That is called by the constructors

– Getting input
• Using SimpleInput class from Georgia Tech

– Showing output
• Using SimpleOutput class from Georgia Tech

– Generating random sentences

• Hierarchy

18

Based on slides by Barb Ericson,
Georgia Institute of Technology

Pull out a Method

• Both Constructors need to pick a random
number using the minimum and maximum

• We can pull out this common code and make
a method for it

	 	 public void pickNumber()
• And then call the method in each constructor

Based on slides by Barb Ericson,
Georgia Institute of Technology

Pick a Number Method
 public NumberGuessGame(int min, int max)
 {
 this.minNumber = min;
 this.maxNumber = max;
 this.pickNumber();
 }

 public void pickNumber()
 {
 int numValues = this.maxNumber - this.minNumber + 1;
 this.pickedNumber = this.randomNumGen.nextInt(numValues);
 this.pickedNumber = this.pickedNumber + this.minNumber;
 }

Based on slides by Barb Ericson,
Georgia Institute of Technology

Need a Method to Play the Game
• Set a variable to not done
• Loop while not done

–Get the current guess
–Increment the number of guesses
–Check if the guess was right

• If so tell the user the guess was right and how many guesses it
took

• Set a variable (done) to stop the loop
–Check if the guess was low

• Tell the user
–Else the guess was too high

• Tell the user

Based on slides by Barb Ericson,
Georgia Institute of Technology

Need a Way to Interact with User
• Use the SimpleInput class for input

–Created by Georgia Tech
–Has a method getIntNumber(String message)

• That will display the message in a pop-up window and return an
integer number entered by the user

• Use the SimpleOutput class for output
–Created by Georgia Tech
–Has a method showInformation(String message)

which will display the output in a pop-up window
• And wait for the user to push a button to show it has been read

Based on slides by Barb Ericson,
Georgia Institute of Technology

Going from Algorithm to Code
• Set a variable to not done
• Loop while not done

– Get the current guess
– Increment the number of guesses
– Check if the guess was right

• If so tell the user the guess was
right and how many guesses it took

• Set a variable (done) to stop the
loop

– Else check if the guess was low
• Tell the user

– Else the guess was too high
• Tell the user

Use boolean done variable and set
it to false

Use a while loop that loops as long
as the done isn’t true

while (!done)
Using SimpleInput

And a variable guess
numGuesses++;
if (guess == pickedNumber)

Use SimpleOutput and
numGuesses

Change done to true
else if (guess < pickedNumber)
else

Based on slides by Barb Ericson,
Georgia Institute of Technology

Add a method to play the game
public void playGame()
 {
 boolean done = false;

 // loop till guess is correct
 while (!done)
 {
 // need to get a guess from the user
 int guess = SimpleInput.getIntNumber("Pick a number "+
 "between " + this.minNumber + " and " +
 this.maxNumber);

 // increment the number of guesses
 this.numGuesses++;

 // we need to check the guess (compare to pickedNum)
 if (guess == this.pickedNumber)
 {

Based on slides by Barb Ericson,
Georgia Institute of Technology

Play
 // tell the user she/he was right
 SimpleOutput.showInformation("That was right! " +
 "It took you " +
 this.numGuesses + " tries");
 done = true;
 }
 else if (guess < this.pickedNumber)
 {
 // we need to tell the user too low
 SimpleOutput.showInformation("Too low");
 }
 else
 {
 // tell the user the guess is too high
 SimpleOutput.showInformation("Too high");
 }
 }
 }

Based on slides by Barb Ericson,
Georgia Institute of Technology

Add a main method
 public static void main(String[] args)
 {
 NumberGuessGame game = new NumberGuessGame();
 game.playGame();
 }

Based on slides by Barb Ericson,
Georgia Institute of Technology

Random Sentence Generator Exercise

• Write a class that can generate random
sentences.
–Create a class SentenceGenerator

• That has an array of nouns
• An array of verbs
• And an array of phrases
• And a method generate sentence which will return a
String object that has a randomly selected noun, verb,
and phrase appended together

Based on slides by Barb Ericson,
Georgia Institute of Technology

Summary
• If more than one constructor needs to do the same

thing
–Pull out the common thing and put it in a method
–And call the method in the constructors

• You can get input from the user
–Using SimpleInput

• You can display output to the user
–Using SimpleOutput

• You can use java.util.Random
–To create random sentences

based on slides by Barb Ericson,
Georgia Institute of Technology

Today -- Painful Details of Classes

• From requirements to classes
• Methods
• Hierarchy

–Inheriting from a class
–The implicit call to super()
–Calling parent constructors explicitly
–Overriding a parent method
–How methods invocations are resolved

29

Based on slides by Barb Ericson,
Georgia Institute of Technology

Creating an Inherited Class

• Create a class ConfusedTurtle that inherits
from the Turtle class
–But when a ConfusedTurtle object is asked to

turn left, it should turn right
–And when a ConfusedTurtle object is asked to

turn right, it should turn left

Based on slides by Barb Ericson,
Georgia Institute of Technology

Inheriting from a Class

• To inherit from another class
–Add extends ClassName to the class declaration

public class ConfusedTurtle extends Turtle
{
}

• Save in ConfusedTurtle.java
• Try to compile it

Based on slides by Barb Ericson,
Georgia Institute of Technology

Compile Error?

• If you try to compile ConfusedTurtle you will
get a compiler error
–Error: cannot resolve symbol
–symbol: constructor Turtle()
–location: class Turtle

• Why do you get this error?

Based on slides by Barb Ericson,
Georgia Institute of Technology

Inherited Constructors

• When one class inherits from another all
constructors in the child class will have an
implicit call to the no-argument parent
constructor as the first line of code in the
child constructor
–Unless an explicit call to a parent constructor is

there as the first line of code
• Using super(paramList);

PAINFUL DETAIL ALERT

Based on slides by Barb Ericson,
Georgia Institute of Technology

Why is an Implicit Call to Super Added?

• Fields are inherited from a parent class
–But fields should be declared private

• Not public, protected, or package visibility
–Lose control over field at the class level then

–But then subclasses can’t access fields directly
–How do you initialize inherited fields?

• By calling the parent constructor that initializes them
–Using super(paramList);

PAINFUL DETAIL ALERT

Based on slides by Barb Ericson,
Georgia Institute of Technology

Explanation of the Compile Error
• There are no constructors in ConfusedTurtle

–So a no-argument one is added for you
• With a call to super();

–But, the Turtle class doesn’t have a no-argument
constructor
• All constructors take a world to put the turtle in

• So we need to add a constructor to
ConfusedTurtle
–That takes a world to add the turtle to

• And call super(theWorld);

PAINFUL DETAIL ALERT

Based on slides by Barb Ericson,
Georgia Institute of Technology

Add a Constructor that takes a World
public class ConfusedTurtle extends Turtle
{
 /**
 * Constructor that takes a world and
 * calls the parent constructor
 * @param theWorld the world to put the
 * confused turtle in
 */
 public ConfusedTurtle(World theWorld)
 {
 super (theWorld);
 }

}

Based on slides by Barb Ericson,
Georgia Institute of Technology

Add a Constructor that takes a World
public class ConfusedTurtle extends Turtle
{
 /**
 * Constructor that takes a world and
 * calls the parent constructor
 * @param modelDisplayObj the world to put the
 * confused turtle in
 */
 public ConfusedTurtle(ModelDisplay modelDisplayObj)
 {
 super (modelDisplayObj);
 }

}

PAINFUL DETAIL ALERT

In the book, it goes one more level up
the hierarchy from Turtle to
SimpleTurtle whose instance variable
is the super class of World, called
“ModelDisplay”.

Based on slides by Barb Ericson,
Georgia Institute of Technology

Try this Out

• Compile ConfusedTurtle
–It should compile

• Try it out
–It should act just like a Turtle object

• How do we get it to turn left when asked to
turn right?
–And right when asked to turn left?

• Use super.turnLeft() and super.turnRight()
–super is a keyword that means the parent class

What would happen if we used “this.turnLeft()” instead of “super.turnLeft()” ?

Based on slides by Barb Ericson,
Georgia Institute of Technology

Resolving Methods
• When a method is invoked

(called) on an object
– The class that created the

object is checked
• To see if it has the method

defined in it
– If so it is executed
– Else the parent of the class that

created the object is checked
for the method

– And so on until the method is
found

• Super means start
checking with the parent of
the class that created the
object

Turtle: Class

drawSquare()

toString()

SimpleTurtle: Class

turnLeft()

turnRight()

forward()

toString()

ConfusedTurtle: Class

turnLeft()

turnRight()

Based on slides by Barb Ericson,
Georgia Institute of Technology

Polymorphism

• Means many forms
• Allows for processing of an object based on

the object’s type
• A method can be declared in a parent class

–And redefined (overriden) by the subclasses
• Dynamic or run-time binding will make sure

the correct method gets run
–Based on the type of object it was called on at run

time

Based on slides by Barb Ericson,
Georgia Institute of Technology

Confused Turtle turnLeft and turnRight
 /**
 * Method to turn left (but confused turtles
 * turn right)
 */
 public void turnLeft()
 {
 super.turnRight();
 }

 /**
 * Method to turn right (but confused turtles
 * turn left)
 */
 public void turnRight()
 {
 super.turnLeft();
 }

Based on slides by Barb Ericson,
Georgia Institute of Technology

Try out ConfusedTurtle
> World earth = new World();
> Turtle tommy = new Turtle(earth);
> tommy.forward();
> tommy.turnLeft();
> ConfusedTurtle bruce = new ConfusedTurtle(earth);
> bruce.backward();
> bruce.turnLeft();
> bruce.forward();
> tommy.forward();
> tommy.turnRight();
> bruce.turnRight();

Based on slides by Barb Ericson,
Georgia Institute of Technology

Override Methods

• Children classes inherit parent methods
–The confused turtle knows how to go forward and

backward
• Because it inherits these from Turtle

• Children can override parent methods
–Have a method with the same name and

parameter list as a parent method
• This method will be called instead of the parent
method

–Like turnLeft and turnRight

Based on slides by Barb Ericson,
Georgia Institute of Technology

What is Happening?

• Each time an object is asked to execute a
method
–It first checks the class that created the object to

see if the method is defined in that class
• If it is it will execute that method
• If it isn’t, it will next check the parent class of the class
that created it

–And execute that method if one if found
–If no method with that name and parameter list is found it will

check that classes parent
»And keep going till it finds the method

Based on slides by Barb Ericson,
Georgia Institute of Technology

Method Overloading

ConfusedTurtle: Class

turnLeft()

turnRight()
bruce

Turtle: Class

drawSquare()tommy

SimpleTurtle: Class

forward()

backward()

turnLeft()

turnRight()
Obj: Turtle

class

Obj: ConfusedTurtle

class

Based on slides by Barb Ericson,
Georgia Institute of Technology

Exercises
• Create a DizzyTurtle class

–That turns a bit to the left and goes forward when asked
to go forward

–And turns a bit to the right and goes backward when
asked to go backward

• Create a SlowTurtle class
–That only goes forward and backward by 50 instead of

100 if you don’t tell it how much to go forward or
backward

• Create a StubbornTurtle class
–Has a 50% chance of doing what you ask

Based on slides by Barb Ericson,
Georgia Institute of Technology

Summary
• Use the extends keyword to specify the parent class

– When you declare a class
public class ConfusedTurtle extends Turtle

• A class inherits methods and fields from a parent class
– But doesn’t have direct access to private fields and methods

• A implicit call to the no-arg parent constructor will be
added
– If there isn’t a call to super(paramList) as the first line of code in a

child constructor
• A class can override a parent method

– To be called instead of the parent method
• Using the same method name and parameter list as a parent method

• A method can invoked a parent’s method
– Using super.methodName(paramList);

Based on slides by Barb Ericson,
Georgia Institute of Technology

Coming Attractions
• HW 10 - oche

–due on Thursday
–look at Python echo recipe

• what is different?

• Wednesday
–review for Final
–take home announced

• Thursday (2-3 PM) in 110 McB
–Open House
–Learn about game design, animation, multimedia,

cyberart
–FOOD ! 48

Dedication and Ribbon Cutting

December 11, 2008

Reading Day
McBryde 106

1:30-2:00PM Ceremony

2:00-3:00PM Open House

(free food)

Computer

Science

Undergraduate

Learning

Center

C
la

s
s
e
s
 - P

ro
je

c
ts

 - C
o
lla

b
o
ra

tio
n

 - A
d
v
is

in
g

 - L
a
b
s

Animation - Multimedia – Software Engineering - Systems

F
a
c
u
lt
y
 O

ff
ic

e
 H

o
u
rs

 –
 G

T
A

 A
s
s
is

ta
n
c
e
 -

 M
e
e
ti
n
g
s

