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Today -- new Stuff !

• Two kinds of methods:
– object
– class

• Creating Classes
– identifying objects and classes
– constructors
– adding a method, accessors and modifiers, 

creating a main method
– comments, javadocs
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A note about colors

• Exercises are colored “cantaloupe”.
– please try some of these before Lab on 

Friday.
– be sure to ask questions on Friday for 

anything you don’t understand
• Breaks between sections are blue.
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Two kinds of methods

• Object methods
• Class methods
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Object Methods

• So far we have created object methods
• Object methods must be invoked on an 

object
– And they work on the object

• Which is implicitly passed to an object method
– And can be referenced using the ‘this’ keyword

• Examples
– pictureObj.show();
– soundObj.play();
– turtleObj.forward();
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Class (Static) Methods
• Can be invoked using the class name

– Or invoked on an object
• Are used for general methods

– Like Math.abs(num);
• Also used to create objects of the class

– Sound s = Sound.createSineWave();
• Can only work with class (static) fields

– Not object fields
• Are declared with the keyword static

– Usually after the visibility
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Create Sine Wave Class Method
  public static Sound createSineWave(int freq, int 

maxAmplitude)
  {
    String file = 

FileChooser.getMediaPath("sec1silence.wav");
    Sound s = new Sound(file);
    double samplingRate = s.getSamplingRate();
    double rawValue = 0;
    int value = 0;
    double interval = 1.0 / freq; // length of cycle in 

seconds
    double samplesPerCycle = interval * samplingRate; 
    double maxValue = 2 * Math.PI;
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Create Sine Wave Class Method - Cont

    // loop through the length of the sound
    for (int i = 0; i < s.getLength(); i++)
    {
      // calculate the value between -1 and 1
      rawValue = Math.sin((i / samplesPerCycle) * maxValue);

      // multiply by the desired max amplitude
      value = (int) (maxAmplitude * rawValue);

      // set the value at this index
      s.setSampleValueAt(i,value);
    }
    return s;
  }
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Testing Create a Sine Wave

• To create a sound with 880 Hz and a 
maximum amplitude of 4000:

Sound s = Sound.createSineWave(880,4000);
s.explore();
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Invoking a Class Method Exercise

• Use the class method 
– createSineWave(freq,maxAmplitude)

• To create 4 sounds and save each to a file
– Try freq = 440 and maxAmplitude =  8000
– Try freq = 440 and maxAmplitude =  10000
– Try freq = 880 and maxAmplitude =  8000
– Try freq = 880 and maxAmplitude =  10000

• Try invoking the method on a sound object 
– Does this work?
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Class Methods
• All methods are compiled and 

the code for the methods is 
stored in the object that 
defines the class
– An object of the class called 

class
• Object methods must be 

called on an object
– And the object is implicitly 

passed to the method
• Class methods can be called 

using the class name or on an 
object of the class
– Objects always have a reference 

to their class

Sound Class : Class

Methods for the 
class

Class fields

s1: Sound

Object 
fields

s2: Sound

Object 
fields
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Creating Square Waves
• To create a square shaped wave we can use positive 

and negative values 
– and switch between them at the halfway point in the cycle

• Pass in the desired frequency and maximum amplitude
• Calculate the interval (1 / freq)
• Calculate the samples per cycle

– Interval * sampling rate
• Calculate half of the samples per cycle
• Loop through the whole sound 

– Init a sampleCounter to 0
– If the sampleCounter < the halfSamplesPerCycle

• Use maxAmplitude 
– Else

• Use -1 * maxAmplitude
– If the sampleCounter is >= samplesPerCycle reset it to 0
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Create Square Wave Exercise
• Write a class (static) method 

– createSquareWave(int freq, int maxAmplitude);
• It should generate and return a sound 

– With a length of 1 second
– That is comprised of square waves

• Use it to generate
– Try freq = 440 and maxAmplitude =  8000
– Try freq = 440 and maxAmplitude =  10000
– Try freq = 880 and maxAmplitude =  8000
– Try freq = 880 and maxAmplitude =  10000

• Compare the square waves and sine waves
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MidiPlayer Class
• Create an object of this class

– MidiPlayer player = new MidiPlayer();
• Use it to play a note (with a duration)

– player.playNote(62,250);
• The 62 is the key on the piano (d in fourth octave)
• The 250 is the length of time to play it 

– out of 1000 milliseconds so if a measure is played in 1 second 
this is a quarter note

• See http://www.harmony-central.com/MIDI/Doc/table2.htm for 
note numbers

• Specify rests with
– player.rest(int duration) in milliseconds

http://www.harmony-central.com/MIDI/Doc/table2.htm
http://www.harmony-central.com/MIDI/Doc/table2.htm
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Method to Play Jingle Bells (4 measures)
  public void playJingleBells4()
  {
    // measure 1
    playNote(52,250); // e eighth note
    playNote(60,250); // c eighth note
    playNote(58,250); // b flat eighth 

note
    playNote(56,250); // a flat eighth 

note

    // measure 2
    playNote(52,500); // e quarter note
    rest(250);        // rest
    playNote(52,125); // e sixteenth 

note
    playNote(52,125); // e sixteenth 

note
    
    

    // measure 3
    playNote(52,500); // e eighth note
    playNote(60,250); // c eighth note
    playNote(58,250); // b flat eighth 

note
    playNote(56,250); // a flat eighth 

note
    
    // measure 4
    playNote(53,1000); // f half note
  }
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Setting the Instrument

• Use
– setInstrument(int number) 
– To set the instrument to make the sounds with
• Testing playJingleBells4

MidiPlayer player = new MidiPlayer();
player.setInstrument(MidiPlayer.FLUTE);
player.playJingleBells4();
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Constants
• The instrument numbers are represented with class 

constants 
– in the MidiPlayer class

• A constant is something that doesn’t change
– Declared with the keyword final
– If you try to change it after the constructor is called you will get a 

compile error
• Class constants are variables that have space in the 

object that defines the class
– Declared with the keywords static and final
– Can be used by Class.Constant

• Java naming convention is to use all uppercase letters 
for constants
– With _ between words
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Some Instrument Constants

• MidiPlayer.PIANO
• MidiPlayer.MUSIC_BOX
• MidiPlayer.GUITAR
• MidiPlayer.HARP
• MidiPlayer.TROMBONE
• MidiPlayer.TRUMPET
• MidiPlayer.ALTO_SAX
• MidiPlayer.TENOR_SAX
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Play a Song Exercise

• Write a method to play at least 4 
measures of a song

• For public domain sheet music of classical 
piano see
– http://www.sheetmusic1.com/

NEW.GREAT.MUSIC.HTML
• For public domain American popular music 

see
– http://levysheetmusic.mse.jhu.edu

http://www.sheetmusic1.com/NEW.GREAT.MUSIC.HTML
http://www.sheetmusic1.com/NEW.GREAT.MUSIC.HTML
http://www.sheetmusic1.com/NEW.GREAT.MUSIC.HTML
http://www.sheetmusic1.com/NEW.GREAT.MUSIC.HTML
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Breaking up Long Methods

• Music often has verses and a refrain
– You play a verse and then the refrain
– And then play the next verse and then the 

refrain
• You could put all of this in one big method

– Put it would be more work and harder to 
change

• A better approach is to break the playing 
of a song into several methods
– And create one method that calls the others
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Playing Jingle Bells Method
 public void playJingleBells()
  {
    // play verse 1
    playJingleBellsV1();
    
    // play refrain
    playJingleBellsRefrain();
    
    // play verse 2
    playJingleBellsV2();
    
    // play refrain
    playJingleBellsRefrain();
  }
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Private Methods

• If you want code in another class to be 
able to invoke a method in your class
– Make the visibility public

• If you don’t want code in another class to 
be able to invoke a method in your class
– Make the visibility private

• Private methods can only be invoked by 
code in the same class
– So they can be changed without worrying 

about affecting another class
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Summary
• Class fields

– Are allocated space in the object that defines the 
class (an object of the class Class)

– Each object has a reference to the object that defines 
a class and can access Class fields

– Are declared using the static keyword
• Constants

– Don’t change
– Are declared using the final keyword

• Private Methods
– Can only be invoked by code in the same class
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Today -- new Stuff !

• Two kinds of methods:
– object
– class

• Creating Classes
– identifying objects and classes
– constructors
– adding a method, accessors and modifiers, 

creating a main method
– comments, javadocs
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Identifying Objects and Classes

• Object-oriented programs 
– Consist of interacting objects

• Which are defined by and created by classes

• To identify the objects in a task
– What are the things that are doing the work or 

being acted upon?
– How do you classify them?
– What data (fields) do they need to know to do 

the task?
– What procedures (methods) do they need?



based on slides by Barb Ericson, 
Georgia Institute of Technology

Identifying the Objects and Classes

• Say that we want to write a program to do 
a slide show
– A series of pictures shown one after the other 

with some time waiting between the pictures
• One way to start is to underline the nouns

– Slide show, picture, wait time 
• A slide show has pictures and a time to 

wait between pictures
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Class Definition
• Each class is defined in a file

– With the same name as the class:  SlideShow.java
• Class names

– Are singular (SlideShow not SlideShows)
– Start with an Uppercase letter
– The rest of the word is lowercase
– upperCase the first letter of each additional word

• The syntax for a class definition is:
– visibility class Name {}

• Inside the class definition goes:
– Fields, constructors, and methods
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Class Declaration

• To declare a SlideShow class 
– Click on the New button in DrJava

• Type in:
public class SlideShow
{
}

• Save it in SlideShow.java
– Click on File then Save

• Click the Compile All button to compile it
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SlideShow Fields

• A SlideShow has pictures and a wait time
– What type should we use for each of these?

• For the pictures we can use a 1-D array
• For wait time we can use integer to hold the 

number of milliseconds to wait
• Use Thread.sleep(waitTime) to wait for waitTime 

number of milliseconds
• This can cause an exception so write the method 

to throw Exception by adding throw Exception to 
the method definition line
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Declaring Fields
• Syntax

– visiblity type name;
– visibility type name = expression;

• Usually use private for the visibility
– So that other classes can’t access it directly

• The type is any of the primitive types, a class 
name , or an interface name

• Arrays are declared with [] after the type or after 
the name
– type[] name; or type name[];

• Names start with a lowercase letter 
– The first letter of each additional word is upperCased
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Default Field Values
• If you don’t specify an initial value for a field 

– It will get one anyway when it is created
• Numbers = 0
• Objects = null (not referring to any object yet)
• boolean = false

public class SlideShow
{
  //////////////// 

fields ///////////////////////////////////////////
  private Picture[] pictureArray;
  private int waitTime = 2000;
}

Initial value will 
be null
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Testing the SlideShow Class

• Add the fields to the class definition and 
compile it

• Try the following in the interactions pane
SlideShow slideShowObj = new SlideShow();
System.out.println(slideShowObj);

• What happens?
– SlideShow@2bd3a <<< you may not get the 

exact same thing
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What Happened?  (Inherited Methods)

• When you executed
– System.out.println(slideShowObj);

• The class SlideShow was checked for a 
toString method
– Since it didn’t have one the parent class was 

checked for a toString method
• The one in Object was executed 

– Which prints the hash code for the object 

• The SlideShow class inherited the toString 
method from the Object class
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How Inheritance Works

• When a method is invoked on an object
• We first check for that method in the object 

that defines the object’s class
• If it isn’t there we look in the parent of that 

class
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All Classes Inherit from Object
• If you don’t specify the parent class when you 

declare a class
– The class with inherit from java.lang.Object

• You can specify the parent class
– Add extends Parent to the class declaration
 public class SlideShow extends Object

• A declaration of 
 public class SlideShow

• Is the same as
 public class SlideShow extends Object
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Getting the Class
• An object keeps a reference to the class that 

created it
– You can get this class with

• Class currClass = obj.getClass();
• Each class keeps a reference to its parent class

– You can get this class with
• Class parentClass = currClass.getSuperclass();

• Try the following:
SlideShow showObj = new SlideShow();
Class showClass = showObj.getClass();
System.out.println(showClass);
Class parentClass = showClass.getSuperclass();
System.out.println(parentClass);
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Overriding an Inherited Method

• If a class defines a method with the same 
name, parameter list, and return type as 
an inherited method
– This method will be called instead of the 

parent method
• To override Object’s toString add this one to SlideShow:
public String toString()
{
    return "A slide show with " + 
      this.pictureArray.length + " pictures and " +
      "a wait time of " + this.waitTime;
}
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Testing toString

• Compile SlideShow.java
• Type the following in the interactions pane 

SlideShow showObj = new SlideShow();
System.out.println(showObj);

• What do you get this time?
– And why?

• Can you fix this?
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Summary
• Object-oriented programs

– Have interacting objects
• To decide what classes to create

– Identify the objects doing the action or being acted upon
• And classify them (what type of thing are they?)

• To declare a class
– public class SlideShow{}

• To declare a field 
– private type fieldName;

• All classes inherit from Object
– Inherit the toString() method

• Add a toString() method to your own classes
– To override the inherited method 
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Today -- new Stuff !

• Two kinds of methods:
– object
– class

• Creating Classes
– identifying objects and classes
– constructors
– adding a method, accessors and modifiers, 

creating a main method
– comments, javadocs
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Constructors
• Are used to initialize the fields of an object

– To other than the default values or assigned values
• You can have more than one constructor

– As long as the parameter lists are different
– This is called overloading constructors

• Syntax
– visibility ClassName(paramList) {}

• Example
public SlideShow(Picture[] pictArray)
{
    this.pictureArray = pictArray;
}
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Creating 1D Arrays
• You can declare an array using

– Type[] arrayName;
• You can create an array using

– new Type[size];
• You can declare an array and create it at the 

same time
– Type[] arrayName = new Type[size];

• Array indices start at 0 and end at length – 1
• You can get the length of an array using

– arrayName.length
• You can add an element to an array using

– name[index] = Object;
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Add a Constructor

• Add the following after the field 
declarations to SlideShow.java:
public SlideShow(Picture[] pictArray)
{
    this.pictureArray = pictArray;
}

• Compile and test
SlideShow showObj = new SlideShow();
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Why did you get an Error?
• We hadn’t declared any constructors before we 

added this one
– But a constructor is called each time a new object is 

created
– We didn’t provide one so the compiler added a no-

argument constructor
• One that takes no parameters and leaves the fields with their 

default or assigned values

• But once you add a constructor
– The compiler will not add any for you

• So now you get an error when you try to use a no-argument 
constructor
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Adding a No-Argument Constructor
• Add the following constructor to the Student class 

public SlideShow() {}
• Now test it again with:

SlideShow showObj = new SlideShow();
System.out.println(showObj);

• Also try:
Picture[] pictArray = new Picture[5];
pictArray[0] = new Picture(FileChooser.getMediaPath("beach.jpg"));
pictArray[1] = new 

Picture(FileChooser.getMediaPath("blueShrub.jpg"));
pictArray[2] = new 

Picture(FileChooser.getMediaPath("church.jpg"));
pictArray[3] = new Picture(FileChooser.getMediaPath("eiffel.jpg"));
pictArray[4] = new Picture(FileChooser.getMediaPath("greece.jpg"));
SlideShow vacShow = new SlideShow(pictArray);
System.out.println(vacShow);
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Tracing Execution

• One way to trace what is happening in 
your program is 
– To add System.out.println() statements 

• Add these to print out the value of the 
picture array both before and after it is set
– System.out.println(this.pictureArray);
– this.pictureArray = pictArray;
– System.out.println(this.pictureArray);
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Debuggers

• You can use a debugger to find the cause 
of bugs (errors in your program)
– A moth caused one bug
– http://www.jamesshuggins.com/h/tek1/

first_computer_bug.htm
• And to trace execution to see what is 

happening
– Which constructor is executed or what method 

is executed
– What values are in the fields
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DrJava’s Debugger

• Click on Debugger in the menu
– Then check the Debug Mode checkbox

Watches 
and 
Breakpoints 
Area

Stack and
Threads 
Area

Check values here
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Setting a Breakpoint

• When you use a debugger you often want 
to set places to stop execution
– Each place to stop at is a breakpoint

• Once execution has stopped there
– You can check the value of parameters and 

fields
• To set a breakpoint

– Right click on a line of code
– Pick “Toggle Breakpoint”
– It will be highlighted in red
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Showing a Breakpoint

• Lines with breakpoints are highlighted in 
red in DrJava

• Set a breakpoint at the line that sets the 
picture array
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Testing a Breakpoint

• Try the constructor again that takes an 
array of pictures

• Execution should stop at the breakpoint
– And the color will change to blue
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Checking Values

• Execution stops before the breakpoint line 
is executed
– So the array hasn't been set yet
– Check this by printing out the value of it in the 

interactions pane
• this.pictureArray

– Then click on the Step Over button
• To let the current line of code be executed

– And check the values again
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Debugging Options
• Step Over

– Execute the current line of code and then stop again before you 
execute the next line of code

• Step Into
– If the line of code that we are stopped at has a method call in it 

stop at the first line in the called method
• Resume

– Continue execution at the current point
• Until the next breakpoint
• Or the program ends

• Step Out
– Execute the rest of the current method and stop at the first line 

after the call to this method
• You can quit debugging by clicking on the X 
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Adding a Constructor Exercise

• Create another constructor in the 
SlideShow class
– That takes both the array of pictures and the 

time to wait between pictures
public SlideShow(Picture[] pictArray,
                   int time)

– Use the debugger to check what happens 
during execution of this constructor
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Summary

• Constructors initialize the fields in an 
object

• To declare a constructor
– public ClassName(paramList) {}

• No return type
• Same name as the class

• You can overload constructors
– The parameter lists must be different

• Use a debugger 
– To watch what happens during execution
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Today -- new Stuff !

• Two kinds of methods:
– object
– class

• Creating Classes
– identifying objects and classes
– constructors
– adding a method, accessors and modifiers, 

creating a main method
– comments, javadocs

56



based on slides by Barb Ericson, 
Georgia Institute of Technology

Showing the Slide Show

• Now that a slide show has an array of 
slides we would like to 
– Show the pictures in the array

• We can loop through the elements of the array
– And show the current picture
– And wait for the wait time 
– Then hide the current picture 

• We need to be careful of 
– A null pictureArray
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Create a Method Exercise

• Create a method show that will first check 
that the picture array isn't null
– And if it isn't will loop through the pictures in 

the array 
• Showing the current picture
• Waiting till the wait time has passed
• Hiding the current picture
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Accessing Fields from Other Classes

• Fields are usually declared to be private
– So that code in other classes can’t directly 

access and change the data
• Try this in the interactions pane

– System.out.println(showObj.pictureArray);
• You will get an exception

– Short for exceptional event – error
• Outside classes can not use object.field to 

access the field value
– Unless it is declared with public visibility
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Accessors and Modifiers
• Accessors 

– Are public methods that return data
• In such a way as to protect the data for this object
• Syntax

public fieldType getFieldName()
• Example

public String getName() { return this.name;}

• Modifiers
– Are public methods that modify data

• In such a way as to protect the data for this object
• Syntax

public returnType setFieldName(type name);
• Example

public void setName(String theName) 
{this.name = theName; }
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Naming Conventions

• Accessors – also called Getters
– Use getFieldName for non boolean fields
– Use isFieldName for boolean fields

• Modifiers – also called Setters and 
Mutators
– Use setFieldName
– Sometimes return a boolean value to indicate 

if the value was set successfully
• Examples

– getName and setName
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Creating SlideShow Accessors

• Add a method to get the wait time
public int getWaitTime()

• What about a method to get the array of 
pictures?
– If someone gets the array s/he can directly 

change the pictures in the array
– It is safer to return the picture at an index

• Then other classes can’t directly change the array 
of pictures
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Exercise

• Create a method that returns the wait time
• Create a method that returns the picture at 

a given index in the array
– If the array is null return null
– If the index isn't valid return null
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Creating Slide Show Modifiers
• We need public methods 

– That let other classes set the time to wait between 
pictures

– Our class is responsible for making sure this only 
happens in such a way 

• as to keep the data valid and not cause errors

• Setting the wait time
– The wait time must be > 0

• Setting an array of pictures
– We can decide if this can be changed or not when it 

isn’t null
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Set Picture Array Modifier

• Setting the array of pictures only if it is 
currently null

public boolean setPictureArray(Picture[] theArray)
  {
    boolean result = false;
    if (this.pictureArray == null)
    {
      this.pictureArray = theArray;
      result = true;
    }
    return result;
  }
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Wait Time Modifier

public void setWaitTime(int time)
  {
     // check that it is a valid wait time
	   if (time >= 0)
       this.waitTime = time;
  }
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Add a Field Exercise

• Add a title field to the SlideShow class 
• Add an accessor to get the value of this 

field
• Add a modifier to set the value of this field
• Modify the show method to first create a 

blank picture with the title on it and show 
that as the first picture in the slide show
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Adding a Main Method
• We have been typing stuff in the interactions pane in 

DrJava
– To try out Java code and to try methods

• Most development environments make you write a main 
method to start execution
– DrJava allows this too

• Each class can have a main method declared as follows:
– public static void main(String[] args)

• It is public so that  it can be called by other classes
• It is static because no object of the class exists when it is executed
• It doesn’t return anything so the return type is void
• You can pass several arguments to the main method and these are 

put in an array of strings
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Main Method
• Add a main method to SlideShow

– Put the statements that you have been doing in the interactions pane in 
the main method

public static void main(String[] args) throws Exception
  {
    Picture[] pictArray = new Picture[5];
    pictArray[0] = new 

Picture(FileChooser.getMediaPath("beach.jpg"));
    pictArray[1] = new 

Picture(FileChooser.getMediaPath("blueShrub.jpg"));
    pictArray[2] = new 

Picture(FileChooser.getMediaPath("church.jpg"));
    pictArray[3] = new 

Picture(FileChooser.getMediaPath("eiffel.jpg"));
    pictArray[4] = new 

Picture(FileChooser.getMediaPath("greece.jpg"));
    SlideShow vacShow = new SlideShow(pictArray);
    vacShow.show();
  }
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Execute the Main Method

• In DrJava you can run the main method in 
the class that is displayed in the definitions 
pane
– By clicking on Tools then Run Document’s 

Main Method (or press key F2)
• It will do

– java SlideShow
– In the interactions pane
– Which executes the main in the SlideShow 

class



based on slides by Barb Ericson, 
Georgia Institute of Technology

Summary
• Classes have fields, constructors, and methods
• Constructors are used to initialize fields in the 

object
• Fields are usually declared to be private

– To protect the data from misuse by other classes
– So you need to provide public accessor (getter) and 

modifier (setter) methods
• That still protect the data

• Use a main method to begin execution
– public static void main(String[] args) {} 
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Today -- new Stuff !

• Two kinds of methods:
– object
– class

• Creating Classes
– identifying objects and classes
– constructors
– adding a method, accessors and modifiers, 

creating a main method
– comments, javadocs
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Comments

• You should add comments to your code
– To make it easier to read and change 

• Comments are ignored by the complier
– Not added to the byte codes

• Java has 3 kinds of comments
– //  comment ends at the end of this line
– /* comment ends with next */
– /** Javadoc comment that ends with */

• can be used by the javadoc utility to create HTML 
documentation



based on slides by Barb Ericson, 
Georgia Institute of Technology

Javadoc Comments
• Add a comment before the class definition

– That explains the purpose of this class
– And says who wrote it

• @author Barb Ericson
/**
 * Class that represents a slide show.  A slide show has
 *  an array of pictures, a time to wait between pictures,
 *  and a title that is shown at the beginning of the show.
 * 
 * @author Barb Ericson 
 */
public class SlideShow
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Method Comments
• Add a comment before each method
• What the parameters are 

– @param name info
• What is returned

– @return info
 /**
   * Method to change the time to wait
   * between pictures
   * @param time the new time to use
   * in milliseconds
   */
  public void setWaitTime(int time)
  {
      if (time >= 0)
         this.waitTime = time;
  }
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Previewing Javadoc HTML

• Click on Tools
• Click on Preview Javadoc for Current 

Document
– This will generate the HTML from the javadoc 

comments and display it
• The HTML document will display
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Generating all HTML for Directory

• In DrJava click on the Javadoc button 
– to create the HTML documentation 
– based on the Javadoc comments

• This will generate HTML for all files in the 
same directory as all open files

• Generates an index.html as a starting 
point
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Javadoc Exercise

• Add a class javadoc comment and method 
javadoc comments to the SlideShow class

• Execute Javadoc and check out the 
created documentation



based on slides by Barb Ericson, 
Georgia Institute of Technology

Summary
• Comments are added to make a program

– Easier to read and understand
– Comments are ignored by the compiler

• There are three types of comments in Java
– // end of line
– /*  multi line */
– /** java doc */

• Javadoc is a utility that comes with the jdk 
– Produces HTML documentation from Javadoc 

comments


