
Media Computation
Lecture 15.2, December 3, 2008

Steve Harrison

based on slides by Barb Ericson,
Georgia Institute of Technology

Today -- new Stuff !

• Two kinds of methods:
– object
– class

• Creating Classes
– identifying objects and classes
– constructors
– adding a method, accessors and modifiers,

creating a main method
– comments, javadocs

2

based on slides by Barb Ericson,
Georgia Institute of Technology

A note about colors

• Exercises are colored “cantaloupe”.
– please try some of these before Lab on

Friday.
– be sure to ask questions on Friday for

anything you don’t understand
• Breaks between sections are blue.

3

based on slides by Barb Ericson,
Georgia Institute of Technology

Two kinds of methods

• Object methods
• Class methods

4

based on slides by Barb Ericson,
Georgia Institute of Technology

Object Methods

• So far we have created object methods
• Object methods must be invoked on an

object
– And they work on the object

• Which is implicitly passed to an object method
– And can be referenced using the ‘this’ keyword

• Examples
– pictureObj.show();
– soundObj.play();
– turtleObj.forward();

based on slides by Barb Ericson,
Georgia Institute of Technology

Class (Static) Methods
• Can be invoked using the class name

– Or invoked on an object
• Are used for general methods

– Like Math.abs(num);
• Also used to create objects of the class

– Sound s = Sound.createSineWave();
• Can only work with class (static) fields

– Not object fields
• Are declared with the keyword static

– Usually after the visibility

based on slides by Barb Ericson,
Georgia Institute of Technology

Create Sine Wave Class Method
 public static Sound createSineWave(int freq, int

maxAmplitude)
 {
 String file =

FileChooser.getMediaPath("sec1silence.wav");
 Sound s = new Sound(file);
 double samplingRate = s.getSamplingRate();
 double rawValue = 0;
 int value = 0;
 double interval = 1.0 / freq; // length of cycle in

seconds
 double samplesPerCycle = interval * samplingRate;
 double maxValue = 2 * Math.PI;

based on slides by Barb Ericson,
Georgia Institute of Technology

Create Sine Wave Class Method - Cont

 // loop through the length of the sound
 for (int i = 0; i < s.getLength(); i++)
 {
 // calculate the value between -1 and 1
 rawValue = Math.sin((i / samplesPerCycle) * maxValue);

 // multiply by the desired max amplitude
 value = (int) (maxAmplitude * rawValue);

 // set the value at this index
 s.setSampleValueAt(i,value);
 }
 return s;
 }

based on slides by Barb Ericson,
Georgia Institute of Technology

Testing Create a Sine Wave

• To create a sound with 880 Hz and a
maximum amplitude of 4000:

Sound s = Sound.createSineWave(880,4000);
s.explore();

based on slides by Barb Ericson,
Georgia Institute of Technology

Invoking a Class Method Exercise

• Use the class method
– createSineWave(freq,maxAmplitude)

• To create 4 sounds and save each to a file
– Try freq = 440 and maxAmplitude = 8000
– Try freq = 440 and maxAmplitude = 10000
– Try freq = 880 and maxAmplitude = 8000
– Try freq = 880 and maxAmplitude = 10000

• Try invoking the method on a sound object
– Does this work?

based on slides by Barb Ericson,
Georgia Institute of Technology

Class Methods
• All methods are compiled and

the code for the methods is
stored in the object that
defines the class
– An object of the class called

class
• Object methods must be

called on an object
– And the object is implicitly

passed to the method
• Class methods can be called

using the class name or on an
object of the class
– Objects always have a reference

to their class

Sound Class : Class

Methods for the
class

Class fields

s1: Sound

Object
fields

s2: Sound

Object
fields

based on slides by Barb Ericson,
Georgia Institute of Technology

Creating Square Waves
• To create a square shaped wave we can use positive

and negative values
– and switch between them at the halfway point in the cycle

• Pass in the desired frequency and maximum amplitude
• Calculate the interval (1 / freq)
• Calculate the samples per cycle

– Interval * sampling rate
• Calculate half of the samples per cycle
• Loop through the whole sound

– Init a sampleCounter to 0
– If the sampleCounter < the halfSamplesPerCycle

• Use maxAmplitude
– Else

• Use -1 * maxAmplitude
– If the sampleCounter is >= samplesPerCycle reset it to 0

based on slides by Barb Ericson,
Georgia Institute of Technology

Create Square Wave Exercise
• Write a class (static) method

– createSquareWave(int freq, int maxAmplitude);
• It should generate and return a sound

– With a length of 1 second
– That is comprised of square waves

• Use it to generate
– Try freq = 440 and maxAmplitude = 8000
– Try freq = 440 and maxAmplitude = 10000
– Try freq = 880 and maxAmplitude = 8000
– Try freq = 880 and maxAmplitude = 10000

• Compare the square waves and sine waves

based on slides by Barb Ericson,
Georgia Institute of Technology

MidiPlayer Class
• Create an object of this class

– MidiPlayer player = new MidiPlayer();
• Use it to play a note (with a duration)

– player.playNote(62,250);
• The 62 is the key on the piano (d in fourth octave)
• The 250 is the length of time to play it

– out of 1000 milliseconds so if a measure is played in 1 second
this is a quarter note

• See http://www.harmony-central.com/MIDI/Doc/table2.htm for
note numbers

• Specify rests with
– player.rest(int duration) in milliseconds

http://www.harmony-central.com/MIDI/Doc/table2.htm
http://www.harmony-central.com/MIDI/Doc/table2.htm

based on slides by Barb Ericson,
Georgia Institute of Technology

Method to Play Jingle Bells (4 measures)
 public void playJingleBells4()
 {
 // measure 1
 playNote(52,250); // e eighth note
 playNote(60,250); // c eighth note
 playNote(58,250); // b flat eighth

note
 playNote(56,250); // a flat eighth

note

 // measure 2
 playNote(52,500); // e quarter note
 rest(250); // rest
 playNote(52,125); // e sixteenth

note
 playNote(52,125); // e sixteenth

note

 // measure 3
 playNote(52,500); // e eighth note
 playNote(60,250); // c eighth note
 playNote(58,250); // b flat eighth

note
 playNote(56,250); // a flat eighth

note

 // measure 4
 playNote(53,1000); // f half note
 }

based on slides by Barb Ericson,
Georgia Institute of Technology

Setting the Instrument

• Use
– setInstrument(int number)
– To set the instrument to make the sounds with
• Testing playJingleBells4

MidiPlayer player = new MidiPlayer();
player.setInstrument(MidiPlayer.FLUTE);
player.playJingleBells4();

based on slides by Barb Ericson,
Georgia Institute of Technology

Constants
• The instrument numbers are represented with class

constants
– in the MidiPlayer class

• A constant is something that doesn’t change
– Declared with the keyword final
– If you try to change it after the constructor is called you will get a

compile error
• Class constants are variables that have space in the

object that defines the class
– Declared with the keywords static and final
– Can be used by Class.Constant

• Java naming convention is to use all uppercase letters
for constants
– With _ between words

based on slides by Barb Ericson,
Georgia Institute of Technology

Some Instrument Constants

• MidiPlayer.PIANO
• MidiPlayer.MUSIC_BOX
• MidiPlayer.GUITAR
• MidiPlayer.HARP
• MidiPlayer.TROMBONE
• MidiPlayer.TRUMPET
• MidiPlayer.ALTO_SAX
• MidiPlayer.TENOR_SAX

based on slides by Barb Ericson,
Georgia Institute of Technology

Play a Song Exercise

• Write a method to play at least 4
measures of a song

• For public domain sheet music of classical
piano see
– http://www.sheetmusic1.com/

NEW.GREAT.MUSIC.HTML
• For public domain American popular music

see
– http://levysheetmusic.mse.jhu.edu

http://www.sheetmusic1.com/NEW.GREAT.MUSIC.HTML
http://www.sheetmusic1.com/NEW.GREAT.MUSIC.HTML
http://www.sheetmusic1.com/NEW.GREAT.MUSIC.HTML
http://www.sheetmusic1.com/NEW.GREAT.MUSIC.HTML

based on slides by Barb Ericson,
Georgia Institute of Technology

Breaking up Long Methods

• Music often has verses and a refrain
– You play a verse and then the refrain
– And then play the next verse and then the

refrain
• You could put all of this in one big method

– Put it would be more work and harder to
change

• A better approach is to break the playing
of a song into several methods
– And create one method that calls the others

based on slides by Barb Ericson,
Georgia Institute of Technology

Playing Jingle Bells Method
 public void playJingleBells()
 {
 // play verse 1
 playJingleBellsV1();

 // play refrain
 playJingleBellsRefrain();

 // play verse 2
 playJingleBellsV2();

 // play refrain
 playJingleBellsRefrain();
 }

based on slides by Barb Ericson,
Georgia Institute of Technology

Private Methods

• If you want code in another class to be
able to invoke a method in your class
– Make the visibility public

• If you don’t want code in another class to
be able to invoke a method in your class
– Make the visibility private

• Private methods can only be invoked by
code in the same class
– So they can be changed without worrying

about affecting another class

based on slides by Barb Ericson,
Georgia Institute of Technology

Summary
• Class fields

– Are allocated space in the object that defines the
class (an object of the class Class)

– Each object has a reference to the object that defines
a class and can access Class fields

– Are declared using the static keyword
• Constants

– Don’t change
– Are declared using the final keyword

• Private Methods
– Can only be invoked by code in the same class

based on slides by Barb Ericson,
Georgia Institute of Technology

Today -- new Stuff !

• Two kinds of methods:
– object
– class

• Creating Classes
– identifying objects and classes
– constructors
– adding a method, accessors and modifiers,

creating a main method
– comments, javadocs

24

based on slides by Barb Ericson,
Georgia Institute of Technology

Identifying Objects and Classes

• Object-oriented programs
– Consist of interacting objects

• Which are defined by and created by classes

• To identify the objects in a task
– What are the things that are doing the work or

being acted upon?
– How do you classify them?
– What data (fields) do they need to know to do

the task?
– What procedures (methods) do they need?

based on slides by Barb Ericson,
Georgia Institute of Technology

Identifying the Objects and Classes

• Say that we want to write a program to do
a slide show
– A series of pictures shown one after the other

with some time waiting between the pictures
• One way to start is to underline the nouns

– Slide show, picture, wait time
• A slide show has pictures and a time to

wait between pictures

based on slides by Barb Ericson,
Georgia Institute of Technology

Class Definition
• Each class is defined in a file

– With the same name as the class: SlideShow.java
• Class names

– Are singular (SlideShow not SlideShows)
– Start with an Uppercase letter
– The rest of the word is lowercase
– upperCase the first letter of each additional word

• The syntax for a class definition is:
– visibility class Name {}

• Inside the class definition goes:
– Fields, constructors, and methods

based on slides by Barb Ericson,
Georgia Institute of Technology

Class Declaration

• To declare a SlideShow class
– Click on the New button in DrJava

• Type in:
public class SlideShow
{
}

• Save it in SlideShow.java
– Click on File then Save

• Click the Compile All button to compile it

based on slides by Barb Ericson,
Georgia Institute of Technology

SlideShow Fields

• A SlideShow has pictures and a wait time
– What type should we use for each of these?

• For the pictures we can use a 1-D array
• For wait time we can use integer to hold the

number of milliseconds to wait
• Use Thread.sleep(waitTime) to wait for waitTime

number of milliseconds
• This can cause an exception so write the method

to throw Exception by adding throw Exception to
the method definition line

based on slides by Barb Ericson,
Georgia Institute of Technology

Declaring Fields
• Syntax

– visiblity type name;
– visibility type name = expression;

• Usually use private for the visibility
– So that other classes can’t access it directly

• The type is any of the primitive types, a class
name , or an interface name

• Arrays are declared with [] after the type or after
the name
– type[] name; or type name[];

• Names start with a lowercase letter
– The first letter of each additional word is upperCased

based on slides by Barb Ericson,
Georgia Institute of Technology

Default Field Values
• If you don’t specify an initial value for a field

– It will get one anyway when it is created
• Numbers = 0
• Objects = null (not referring to any object yet)
• boolean = false

public class SlideShow
{
 ////////////////

fields ///
 private Picture[] pictureArray;
 private int waitTime = 2000;
}

Initial value will
be null

based on slides by Barb Ericson,
Georgia Institute of Technology

Testing the SlideShow Class

• Add the fields to the class definition and
compile it

• Try the following in the interactions pane
SlideShow slideShowObj = new SlideShow();
System.out.println(slideShowObj);

• What happens?
– SlideShow@2bd3a <<< you may not get the

exact same thing

based on slides by Barb Ericson,
Georgia Institute of Technology

What Happened? (Inherited Methods)

• When you executed
– System.out.println(slideShowObj);

• The class SlideShow was checked for a
toString method
– Since it didn’t have one the parent class was

checked for a toString method
• The one in Object was executed

– Which prints the hash code for the object

• The SlideShow class inherited the toString
method from the Object class

based on slides by Barb Ericson,
Georgia Institute of Technology

How Inheritance Works

• When a method is invoked on an object
• We first check for that method in the object

that defines the object’s class
• If it isn’t there we look in the parent of that

class

based on slides by Barb Ericson,
Georgia Institute of Technology

All Classes Inherit from Object
• If you don’t specify the parent class when you

declare a class
– The class with inherit from java.lang.Object

• You can specify the parent class
– Add extends Parent to the class declaration
 public class SlideShow extends Object

• A declaration of
 public class SlideShow

• Is the same as
 public class SlideShow extends Object

based on slides by Barb Ericson,
Georgia Institute of Technology

Getting the Class
• An object keeps a reference to the class that

created it
– You can get this class with

• Class currClass = obj.getClass();
• Each class keeps a reference to its parent class

– You can get this class with
• Class parentClass = currClass.getSuperclass();

• Try the following:
SlideShow showObj = new SlideShow();
Class showClass = showObj.getClass();
System.out.println(showClass);
Class parentClass = showClass.getSuperclass();
System.out.println(parentClass);

based on slides by Barb Ericson,
Georgia Institute of Technology

Overriding an Inherited Method

• If a class defines a method with the same
name, parameter list, and return type as
an inherited method
– This method will be called instead of the

parent method
• To override Object’s toString add this one to SlideShow:
public String toString()
{
 return "A slide show with " +
 this.pictureArray.length + " pictures and " +
 "a wait time of " + this.waitTime;
}

based on slides by Barb Ericson,
Georgia Institute of Technology

Testing toString

• Compile SlideShow.java
• Type the following in the interactions pane

SlideShow showObj = new SlideShow();
System.out.println(showObj);

• What do you get this time?
– And why?

• Can you fix this?

based on slides by Barb Ericson,
Georgia Institute of Technology

Summary
• Object-oriented programs

– Have interacting objects
• To decide what classes to create

– Identify the objects doing the action or being acted upon
• And classify them (what type of thing are they?)

• To declare a class
– public class SlideShow{}

• To declare a field
– private type fieldName;

• All classes inherit from Object
– Inherit the toString() method

• Add a toString() method to your own classes
– To override the inherited method

based on slides by Barb Ericson,
Georgia Institute of Technology

Today -- new Stuff !

• Two kinds of methods:
– object
– class

• Creating Classes
– identifying objects and classes
– constructors
– adding a method, accessors and modifiers,

creating a main method
– comments, javadocs

40

based on slides by Barb Ericson,
Georgia Institute of Technology

Constructors
• Are used to initialize the fields of an object

– To other than the default values or assigned values
• You can have more than one constructor

– As long as the parameter lists are different
– This is called overloading constructors

• Syntax
– visibility ClassName(paramList) {}

• Example
public SlideShow(Picture[] pictArray)
{
 this.pictureArray = pictArray;
}

based on slides by Barb Ericson,
Georgia Institute of Technology

Creating 1D Arrays
• You can declare an array using

– Type[] arrayName;
• You can create an array using

– new Type[size];
• You can declare an array and create it at the

same time
– Type[] arrayName = new Type[size];

• Array indices start at 0 and end at length – 1
• You can get the length of an array using

– arrayName.length
• You can add an element to an array using

– name[index] = Object;

based on slides by Barb Ericson,
Georgia Institute of Technology

Add a Constructor

• Add the following after the field
declarations to SlideShow.java:
public SlideShow(Picture[] pictArray)
{
 this.pictureArray = pictArray;
}

• Compile and test
SlideShow showObj = new SlideShow();

based on slides by Barb Ericson,
Georgia Institute of Technology

Why did you get an Error?
• We hadn’t declared any constructors before we

added this one
– But a constructor is called each time a new object is

created
– We didn’t provide one so the compiler added a no-

argument constructor
• One that takes no parameters and leaves the fields with their

default or assigned values

• But once you add a constructor
– The compiler will not add any for you

• So now you get an error when you try to use a no-argument
constructor

based on slides by Barb Ericson,
Georgia Institute of Technology

Adding a No-Argument Constructor
• Add the following constructor to the Student class

public SlideShow() {}
• Now test it again with:

SlideShow showObj = new SlideShow();
System.out.println(showObj);

• Also try:
Picture[] pictArray = new Picture[5];
pictArray[0] = new Picture(FileChooser.getMediaPath("beach.jpg"));
pictArray[1] = new

Picture(FileChooser.getMediaPath("blueShrub.jpg"));
pictArray[2] = new

Picture(FileChooser.getMediaPath("church.jpg"));
pictArray[3] = new Picture(FileChooser.getMediaPath("eiffel.jpg"));
pictArray[4] = new Picture(FileChooser.getMediaPath("greece.jpg"));
SlideShow vacShow = new SlideShow(pictArray);
System.out.println(vacShow);

based on slides by Barb Ericson,
Georgia Institute of Technology

Tracing Execution

• One way to trace what is happening in
your program is
– To add System.out.println() statements

• Add these to print out the value of the
picture array both before and after it is set
– System.out.println(this.pictureArray);
– this.pictureArray = pictArray;
– System.out.println(this.pictureArray);

based on slides by Barb Ericson,
Georgia Institute of Technology

Debuggers

• You can use a debugger to find the cause
of bugs (errors in your program)
– A moth caused one bug
– http://www.jamesshuggins.com/h/tek1/

first_computer_bug.htm
• And to trace execution to see what is

happening
– Which constructor is executed or what method

is executed
– What values are in the fields

based on slides by Barb Ericson,
Georgia Institute of Technology

DrJava’s Debugger

• Click on Debugger in the menu
– Then check the Debug Mode checkbox

Watches
and
Breakpoints
Area

Stack and
Threads
Area

Check values here

based on slides by Barb Ericson,
Georgia Institute of Technology

Setting a Breakpoint

• When you use a debugger you often want
to set places to stop execution
– Each place to stop at is a breakpoint

• Once execution has stopped there
– You can check the value of parameters and

fields
• To set a breakpoint

– Right click on a line of code
– Pick “Toggle Breakpoint”
– It will be highlighted in red

based on slides by Barb Ericson,
Georgia Institute of Technology

Showing a Breakpoint

• Lines with breakpoints are highlighted in
red in DrJava

• Set a breakpoint at the line that sets the
picture array

based on slides by Barb Ericson,
Georgia Institute of Technology

Testing a Breakpoint

• Try the constructor again that takes an
array of pictures

• Execution should stop at the breakpoint
– And the color will change to blue

based on slides by Barb Ericson,
Georgia Institute of Technology

Checking Values

• Execution stops before the breakpoint line
is executed
– So the array hasn't been set yet
– Check this by printing out the value of it in the

interactions pane
• this.pictureArray

– Then click on the Step Over button
• To let the current line of code be executed

– And check the values again

based on slides by Barb Ericson,
Georgia Institute of Technology

Debugging Options
• Step Over

– Execute the current line of code and then stop again before you
execute the next line of code

• Step Into
– If the line of code that we are stopped at has a method call in it

stop at the first line in the called method
• Resume

– Continue execution at the current point
• Until the next breakpoint
• Or the program ends

• Step Out
– Execute the rest of the current method and stop at the first line

after the call to this method
• You can quit debugging by clicking on the X

based on slides by Barb Ericson,
Georgia Institute of Technology

Adding a Constructor Exercise

• Create another constructor in the
SlideShow class
– That takes both the array of pictures and the

time to wait between pictures
public SlideShow(Picture[] pictArray,
 int time)

– Use the debugger to check what happens
during execution of this constructor

based on slides by Barb Ericson,
Georgia Institute of Technology

Summary

• Constructors initialize the fields in an
object

• To declare a constructor
– public ClassName(paramList) {}

• No return type
• Same name as the class

• You can overload constructors
– The parameter lists must be different

• Use a debugger
– To watch what happens during execution

based on slides by Barb Ericson,
Georgia Institute of Technology

Today -- new Stuff !

• Two kinds of methods:
– object
– class

• Creating Classes
– identifying objects and classes
– constructors
– adding a method, accessors and modifiers,

creating a main method
– comments, javadocs

56

based on slides by Barb Ericson,
Georgia Institute of Technology

Showing the Slide Show

• Now that a slide show has an array of
slides we would like to
– Show the pictures in the array

• We can loop through the elements of the array
– And show the current picture
– And wait for the wait time
– Then hide the current picture

• We need to be careful of
– A null pictureArray

based on slides by Barb Ericson,
Georgia Institute of Technology

Create a Method Exercise

• Create a method show that will first check
that the picture array isn't null
– And if it isn't will loop through the pictures in

the array
• Showing the current picture
• Waiting till the wait time has passed
• Hiding the current picture

based on slides by Barb Ericson,
Georgia Institute of Technology

Accessing Fields from Other Classes

• Fields are usually declared to be private
– So that code in other classes can’t directly

access and change the data
• Try this in the interactions pane

– System.out.println(showObj.pictureArray);
• You will get an exception

– Short for exceptional event – error
• Outside classes can not use object.field to

access the field value
– Unless it is declared with public visibility

based on slides by Barb Ericson,
Georgia Institute of Technology

Accessors and Modifiers
• Accessors

– Are public methods that return data
• In such a way as to protect the data for this object
• Syntax

public fieldType getFieldName()
• Example

public String getName() { return this.name;}

• Modifiers
– Are public methods that modify data

• In such a way as to protect the data for this object
• Syntax

public returnType setFieldName(type name);
• Example

public void setName(String theName)
{this.name = theName; }

based on slides by Barb Ericson,
Georgia Institute of Technology

Naming Conventions

• Accessors – also called Getters
– Use getFieldName for non boolean fields
– Use isFieldName for boolean fields

• Modifiers – also called Setters and
Mutators
– Use setFieldName
– Sometimes return a boolean value to indicate

if the value was set successfully
• Examples

– getName and setName

based on slides by Barb Ericson,
Georgia Institute of Technology

Creating SlideShow Accessors

• Add a method to get the wait time
public int getWaitTime()

• What about a method to get the array of
pictures?
– If someone gets the array s/he can directly

change the pictures in the array
– It is safer to return the picture at an index

• Then other classes can’t directly change the array
of pictures

based on slides by Barb Ericson,
Georgia Institute of Technology

Exercise

• Create a method that returns the wait time
• Create a method that returns the picture at

a given index in the array
– If the array is null return null
– If the index isn't valid return null

based on slides by Barb Ericson,
Georgia Institute of Technology

Creating Slide Show Modifiers
• We need public methods

– That let other classes set the time to wait between
pictures

– Our class is responsible for making sure this only
happens in such a way

• as to keep the data valid and not cause errors

• Setting the wait time
– The wait time must be > 0

• Setting an array of pictures
– We can decide if this can be changed or not when it

isn’t null

based on slides by Barb Ericson,
Georgia Institute of Technology

Set Picture Array Modifier

• Setting the array of pictures only if it is
currently null

public boolean setPictureArray(Picture[] theArray)
 {
 boolean result = false;
 if (this.pictureArray == null)
 {
 this.pictureArray = theArray;
 result = true;
 }
 return result;
 }

based on slides by Barb Ericson,
Georgia Institute of Technology

Wait Time Modifier

public void setWaitTime(int time)
 {
 // check that it is a valid wait time
	 if (time >= 0)
 this.waitTime = time;
 }

based on slides by Barb Ericson,
Georgia Institute of Technology

Add a Field Exercise

• Add a title field to the SlideShow class
• Add an accessor to get the value of this

field
• Add a modifier to set the value of this field
• Modify the show method to first create a

blank picture with the title on it and show
that as the first picture in the slide show

based on slides by Barb Ericson,
Georgia Institute of Technology

Adding a Main Method
• We have been typing stuff in the interactions pane in

DrJava
– To try out Java code and to try methods

• Most development environments make you write a main
method to start execution
– DrJava allows this too

• Each class can have a main method declared as follows:
– public static void main(String[] args)

• It is public so that it can be called by other classes
• It is static because no object of the class exists when it is executed
• It doesn’t return anything so the return type is void
• You can pass several arguments to the main method and these are

put in an array of strings

based on slides by Barb Ericson,
Georgia Institute of Technology

Main Method
• Add a main method to SlideShow

– Put the statements that you have been doing in the interactions pane in
the main method

public static void main(String[] args) throws Exception
 {
 Picture[] pictArray = new Picture[5];
 pictArray[0] = new

Picture(FileChooser.getMediaPath("beach.jpg"));
 pictArray[1] = new

Picture(FileChooser.getMediaPath("blueShrub.jpg"));
 pictArray[2] = new

Picture(FileChooser.getMediaPath("church.jpg"));
 pictArray[3] = new

Picture(FileChooser.getMediaPath("eiffel.jpg"));
 pictArray[4] = new

Picture(FileChooser.getMediaPath("greece.jpg"));
 SlideShow vacShow = new SlideShow(pictArray);
 vacShow.show();
 }

based on slides by Barb Ericson,
Georgia Institute of Technology

Execute the Main Method

• In DrJava you can run the main method in
the class that is displayed in the definitions
pane
– By clicking on Tools then Run Document’s

Main Method (or press key F2)
• It will do

– java SlideShow
– In the interactions pane
– Which executes the main in the SlideShow

class

based on slides by Barb Ericson,
Georgia Institute of Technology

Summary
• Classes have fields, constructors, and methods
• Constructors are used to initialize fields in the

object
• Fields are usually declared to be private

– To protect the data from misuse by other classes
– So you need to provide public accessor (getter) and

modifier (setter) methods
• That still protect the data

• Use a main method to begin execution
– public static void main(String[] args) {}

based on slides by Barb Ericson,
Georgia Institute of Technology

Today -- new Stuff !

• Two kinds of methods:
– object
– class

• Creating Classes
– identifying objects and classes
– constructors
– adding a method, accessors and modifiers,

creating a main method
– comments, javadocs

72

based on slides by Barb Ericson,
Georgia Institute of Technology

Comments

• You should add comments to your code
– To make it easier to read and change

• Comments are ignored by the complier
– Not added to the byte codes

• Java has 3 kinds of comments
– // comment ends at the end of this line
– /* comment ends with next */
– /** Javadoc comment that ends with */

• can be used by the javadoc utility to create HTML
documentation

based on slides by Barb Ericson,
Georgia Institute of Technology

Javadoc Comments
• Add a comment before the class definition

– That explains the purpose of this class
– And says who wrote it

• @author Barb Ericson
/**
 * Class that represents a slide show. A slide show has
 * an array of pictures, a time to wait between pictures,
 * and a title that is shown at the beginning of the show.
 *
 * @author Barb Ericson
 */
public class SlideShow

based on slides by Barb Ericson,
Georgia Institute of Technology

Method Comments
• Add a comment before each method
• What the parameters are

– @param name info
• What is returned

– @return info
 /**
 * Method to change the time to wait
 * between pictures
 * @param time the new time to use
 * in milliseconds
 */
 public void setWaitTime(int time)
 {
 if (time >= 0)
 this.waitTime = time;
 }

based on slides by Barb Ericson,
Georgia Institute of Technology

Previewing Javadoc HTML

• Click on Tools
• Click on Preview Javadoc for Current

Document
– This will generate the HTML from the javadoc

comments and display it
• The HTML document will display

based on slides by Barb Ericson,
Georgia Institute of Technology

Generating all HTML for Directory

• In DrJava click on the Javadoc button
– to create the HTML documentation
– based on the Javadoc comments

• This will generate HTML for all files in the
same directory as all open files

• Generates an index.html as a starting
point

based on slides by Barb Ericson,
Georgia Institute of Technology

Javadoc Exercise

• Add a class javadoc comment and method
javadoc comments to the SlideShow class

• Execute Javadoc and check out the
created documentation

based on slides by Barb Ericson,
Georgia Institute of Technology

Summary
• Comments are added to make a program

– Easier to read and understand
– Comments are ignored by the compiler

• There are three types of comments in Java
– // end of line
– /* multi line */
– /** java doc */

• Javadoc is a utility that comes with the jdk
– Produces HTML documentation from Javadoc

comments

