
Media Computation
Lecture 15.1, December 1, 2008

Steve Harrison

Playing a Sound

• We can create a Sound object just as we
created a Picture object
–Get a file name and save a reference to it

•String fileName = FileChooser.pickAFile();
–Pick a file that ends in .wav

–Create the sound object by asking the class to
create a new Sound object and initialize it by
reading data from the given file name
•Sound sound1 = new Sound(fileName);

–Play the Sound
•sound1.play();

Play Sound Exercise
• Try creating a Sound

object and playing it by
–Specifying it in steps
–Specifying it all at once

• How would you play the
same sound twice?

Sound Basics
• new Sound(fileName)

–Will create a new Sound object from the data in the file
with the passed file name

• soundObj.play()
–Will start the sound playing

• soundObj.explore();
–Will open a sound explorer on the object

• soundObj.blockingPlay()
–Will play the sound and wait to return until the sound is

finished
• soundObj.write(String fileName)

–Will write out the sound to the file

Play and Explore a Sound

Sound
Explorer

Type here

The Sound Explorer
• Not all of the sound is

shown when you
explore a sound
–Skips values to fit in the

window
• You can zoom in

–To see all sample values
• You can zoom out

–To fit the sound in the
window again

Getting the Sound Sample Values

• A Sound has many values in it
–Numbers that represent the sound at that time in

the sample
• You can get an array of SoundSample

objects
–SoundSample[] sampleArray =

sound1.getSamples();

Explore the Sound Sample Values

• Zoom in to see all the sound values

Click here to go to the next index

Type in an index

See the value

Click here to pick an index

Print the Sound Sample Value

• You can get the SoundSample object from
the array at an index
–SoundSample sample = sampleArray[0];

• And then get the value from that
–System.out.println(sample.getValue());

• What are the first 10 values of the Sound
created from the file croak.wav?

Changing the Value of a Sound Sample

• You can set the value of a SoundSample
–sample.setValue(value);
–This will change the value in the Sound object as

well
• So how would you change the value to the

original value * 2?

SoundSample sample = sampleArray[0];
sample.setValue(sample.getValue() * 2);

For-Each Loop (Java 5.0)

• For each of the elements in a collection of
objects do the body of the loop
–Each time through the loop the variableName will

refer to a different object in the collection
for (type variableName : collection)
{
 // statement to repeat
}

For-Each Loop to Process Sound Samples

SoundSample[] sampleArray = this.getSamples();
int value = 0;

for (SoundSample sample : sampleArray)
{
 value = sample.getValue(); // get the value
 sample.setValue(value * 2); // set the value
}

Increase Volume with For-Each Loop
public void increaseVolume()
 {
 SoundSample[] sampleArray = this.getSamples();
 int value = 0; // value at sample

 // loop through SoundSample objects
 for (SoundSample sample : sampleArray)
 {
 value = sample.getValue(); // get the value
 sample.setValue(value * 2); // set the value
 }
 }

Testing increaseVolume

String file =
FileChooser.getMediaPath(“gettysburg10.wav“);

Sound soundObj = new Sound(file);
soundObj.play();
soundObj.explore();
soundObj.increaseVolume();
soundObj.play();
soundObj.explore();

While Loop to Process Sound Samples
int index = 0; // starting index
SoundSample sample = null; // current sample

obj
int value = 0; // value at sample
while (index < sampleArray.length)
{
 sample = sampleArray[index]; // get current obj
 value = sample.getValue(); // get the value
 sample.setValue(value * 2); // set the value
 index++; // increment index
}

Increase Volume with While Loop
public void increaseVolume()
 {
 SoundSample[] sampleArray = this.getSamples(); // get array
 int index = 0; // starting index
 SoundSample sample = null; // current sample obj
 int value = 0; // value at sample

 // loop through SoundSample objects
 while (index < sampleArray.length)
 {
 sample = sampleArray[index]; // get current obj
 value = sample.getValue(); // get the value
 sample.setValue(value * 2); // set the value
 index++; // increment index
 }
 }

Tracing Execution
• The index is set to 0
• The value is set to the

value in the array at that
index (59)

• The sample value at the
current index is set to 2 *
value

• The index changes to the
next index (1)

• We check if the index is
less than the length of the
array and
– If so do the loop again
– Else jump to the first

statement after the loop

Memory versus Disk

• When we read from a file we read from disk
into memory
–Computers only do calculations on memory

• We change the values in memory
• The file on the disk hasn’t changed
• To save our new sound we need to write a

file to the disk
–soundObj.write(fileName);

While Loop versus For Loop

• It is easy to make mistakes when you use a
while loop for looping a set number of times
–Forget to declare variables before the loop
–Forget to increment the variables in the loop

before the next test
• Programmers use a For loop when the

number of times to loop is known
–And a while loop when you don’t know

For Loop

• A for loop allows you to declare and initialize
variables, specify the test, and specify the
way the variables change
–All in one place
–But, they still happen in the usual place

for (int index = 0;
 index < sampleArray.length;
 index++)
{
}

Increase Volume with a For Loop
public void increaseVolume()
 {
 SoundSample[] sampleArray = this.getSamples();
 SoundSample sample = null;
 int value = 0;

 // loop through all the samples in the array
 for (int index = 0; index < sampleArray.length; index++)
 {
 sample = sampleArray[index];
 value = sample.getValue();
 sample.setValue(value * 2);
 }
 }

General Change Volume Method

• The methods increaseVolume and
decreaseVolume are very similar
–They multiply the current sound values by a given

amount
• To change this you would need to modify the method
and compile

–The methods would be more reusable if we pass
in the amount to multiply the current sound values
by
• As a parameter to the method

General changeVolume method
public void changeVolume(double factor)
{
 SoundSample[] sampleArray = this.getSamples();
 SoundSample sample = null;
 int value = 0;

 // loop through all the samples in the array
 for (int i = 0; i < sampleArray.length; i++)
 {
 sample = sampleArray[i];
 value = sample.getValue();
 sample.setValue((int) (value * factor));
 }
}

Find the Largest Value in an Array
• Start with the first value in the array

–The one at index 0
int max = valueArray[0];

• Loop through the rest of the items in the array
–Compare the absolute value of the value at current

index in the array to the absolute value of the largest
• If it is bigger store it in max

for (int i = 1; i < valueArray.length; i++)
{
	 if (Math.abs(valueArray[i]) > Math.abs(max))
 max = valueArray[i];
}

Find the Largest Value in an Array

int max = first element
max = valueArray[0] = 2000;
for (int i = 1; i < valueArray.length; i++)
{

 if (Math.abs(valueArray[i]) >
 Math.abs(max)
 max = valueArray[i];
 }

2000 | 1000 | -2344 | 100 | 3300

Find the Largest Value in an Array

int max = first element
max = valueArray[0] = 2000;
for (int i = 1; i < valueArray.length; i++)
{

 if (Math.abs(valueArray[i]) >
 Math.abs(max)
 {
 max = valueArray[i];
 }
 }

2000 | 1000 | -2344 | 100 | 3300

Find the Largest Value in an Array
• What is the value of

max each time through
the loop?

i value max

2000

1 1000 2000

2 -2344 -2344

3 100 -2344

4 3300 3300

2000 | 1000 | -2344 | 100 | 3300

0 1 2 3 4

Normalize Sound - Continued
• After we find the maximum value

–Determine the factor that we can multiply all values by
• And not go over the maximum allowed value

double multiplier = 32767.0 / max;

–Call the method changeVolume with the multiplier
• Test with

String file =

 FileChooser.getMediaPath(“double preamble.wav”);
Sound soundObj = new Sound(file);
soundObj.explore();
soundObj.normalize();
soundObj.explore();

Normalize Method
public void normalize()
{
 SoundSample[] sampleArray =

this.getSamples();
 SoundSample sample =

sampleArray[0];
 int value = 0;
 int max = soundSample.getValue();

 // loop comparing values
 // to the current largest
 for (int i = 1; i <

sampleArray.length; i++)
 {
 sample = sampleArray[i];
 value = sample.getValue();

 if (Math.abs(value) >
 Math.abs(max))
 {
 max = value;}
 }
 }

 // calculate the multiplier
 double multiplier = 32767.0 / max;

 // change the volume
 this.changeVolume(multiplier);
}

Testing Normalize
• How do we know if it worked?

–We can play the sound but it may not sound all that
different

–We can use the explorer to view the sound wave before
and after we normalize the sound
• And see if the values changed

– Check more than one index

–We can use System.out.println to print out the largest
value and the index of it
• We need to save the index of the maximum value
• And use the explorer to check the value at that index

Normalize Method – Revised
public void normalize()
{
 SoundSample[] sampleArray =

this.getSamples();
 SoundSample sample =

sampleArray[0];
 int value = 0;
 int max = soundSample.getValue();
 int maxIndex = 0;

 // loop comparing values
 // to the current largest
 for (int i = 1; i <

sampleArray.length; i++)
 {
 sample = sampleArray[i];
 value = sample.getValue();

 if (Math.abs(value) >
 Math.abs(max))
 {
 max = value;
 maxIndex = i;
 }
 }

 System.out.println(“largest “ +
 max + “ at index “ +
 maxIndex);

 // calculate the multiplier
 double multiplier = 32767.0 / max;

 // change the volume
 this.changeVolume(multiplier);
}

Testing Normalize

• Before Normalize

• After Normalize

Exercise - modify to handle special cond

33

PYTHON: Normalizing
 A few ways to think about “normalizing”:

 use the whole enchilada (don’t waste any bits...)
 make everything use the same scale (0 to 100%)
 need 2 loops -- one to find largest and one to reset

def normalize(sound) :
 largest = 0
 for sample in getSamples(sound):

 largest = max(largest, getSample(sample))
 multiplier = 32767.0 / largest
 print “Largest”, largest, “multiplier is”, multiplier
 for sample in getSamples(sound):

setSample(sample, getSample(sample) * multiplier)

PYTHON: Normalizing (modified)
def normalize(sound) :
 largest = 0
 for sample in getSamples(sound):

largest = max(largest, abs(getSample(sample)))
if largest > 32766 :

return sound
 multiplier = 32768.0 / largest
 print “Largest”, largest, “multiplier is”, multiplier
 for sample in getSamples(sound):

setSample(sample, getSample(sample) * multiplier)
 return sound

Exercise - modify to handle special cond

• Don’t do reset values if already normalized
• Consider problem of Math.abs(-32768) >

32767
• Also consider that Python versions did a

returned value, but this is a “class method”
which operates on the object directly. *We
called that “side effect” in functional
programming.

36

Force to Extremes

• What if we want to make all values in a
sound the maximum positive or negative
value?
–If the value is positive make it 32,767
–If the value is negative make it -32,768

• We need a way to execute code based on if
a test is true
–We can use a conditional (if and else)

Conditionals
• Allow you to only

execute statements if
an expression is true
–Or (optionally) only if it is

false
• If you clean your room

–You can go out
• Else

–You must stay home
statement

if (expression)

true

false

Statement
or block

Statement
or block

else

Setting Values to Extremes Exercise
• Write the method forceToExtremes()

–Change all positive values (including 0) to the max
positive value 32767

–and change all the negative values to -32768.
–Using a conditional

• if and else
• Test with:

String file =

 FileChooser.getMediaPath(“preamble.wav“);
Sound soundObj = new Sound(file);
soundObj.explore();
soundObj.forceToExtremes();
soundObj.explore();

Based on slides by Barb Ericson,
Georgia Institute of Technology

To Create a Sound Clip

• Create a new Sound object
–Of the appropriate size

• Ending value – starting value + 1

• Loop from start to end (inclusive)
–for (int x = start; x <= end; x++)

• Use getSampleValueAt(index)
–And setSampleValueAt(index,value);

• Return the new sound object

Based on slides by Barb Ericson,
Georgia Institute of Technology

Clip Method
public Sound clip(int start,
 int end)
{
 // calc the num samples
 int numSamples =
 end - start + 1;
 Sound target =
 new Sound(numSamples);
 int value = 0;
 int targetIndex = 0;

 // copy from start to end
 for (int i = start; i <= end;
 i++, targetIndex++)
 {
 value = this.getSampleValueAt(i);
 target.setSampleValueAt(targetIndex,
 value);
 }

 return target;
}

Based on slides by Barb Ericson,
Georgia Institute of Technology

Testing the Clip Method

String file = FileChooser.getMediaPath(
 “thisisatest.wav”);
Sound s = new Sound(file);
Sound s2 = s.clip(0,8500);
s2.write(
 FileChooser.getMediaPath(“this.wav”));
s2.play();

Based on slides by Barb Ericson,
Georgia Institute of Technology

Challenge

• Create a clip of “is” from thisisatest.wav
• Determine where to start and end the clip
• Create the clip
• Write it to a file

Based on slides by Barb Ericson,
Georgia Institute of Technology

Returning a Value from a Method

• To return a value from a method
–Include a return statement in the body of the

method
–The type of the thing being returned must match

the declared return type
–The clip method declared that it returned a Sound

object
–The return statement returned the target Sound

object
–If the types don’t match you will get a compile

error

Based on slides by Barb Ericson,
Georgia Institute of Technology

Splicing Sounds Together

• Originally meant cutting the sound tape into
segments and then assembling them in the
right order

• Easy to do digitally
• Copy more then one sound into a target

sound
–Track the source index and target index

Based on slides by Barb Ericson,
Georgia Institute of Technology

Splice Method
public void splice()
{
 Sound sound1 = new Sound(FileChooser.getMediaPath(“guzdial.wav”));
 Sound sound2 = new Sound(FileChooser.getMediaPath("is.wav"));
 int targetIndex = 0; // the starting place on the target
 int value = 0;

 // copy all of sound 1 into the current sound (target)
 for (int i = 0;
 i < sound1.getLength();
 i++, targetIndex++)
 {
 value = sound1.getSampleValueAt(i);
 this.setSampleValueAt(targetIndex,value);
 }

Based on slides by Barb Ericson,
Georgia Institute of Technology

Splice Method - Continued
 // create silence between words by setting values to 0
 for (int i = 0;
 i < (int) (this.getSamplingRate() * 0.1);
 i++, targetIndex++) {
 this.setSampleValueAt(targetIndex,0);
 }

 // copy all of sound 2 into the current sound (target)
 for (int i = 0;
 i < sound2.getLength();
 i++, targetIndex++) {
 value = sound2.getSampleValueAt(i);
 this.setSampleValueAt(targetIndex,value);
 }
 }

Notice that targetIndex is not initialized ! I starts from its last value.

Also notice that i is declared and initialized each time. Why? (Because it is
“scoped” for just that block and forgotten for the next for loop block.)

Based on slides by Barb Ericson,
Georgia Institute of Technology

Testing the Splice Method

String silence = FileChooser.getMediaPath(
 "sec3silence.wav");
Sound target = new Sound(silence);
target.explore();
target.splice();
target.explore();

based on slides by Barb Ericson,
Georgia Institute of Technology

Create an Audio Sentence Exercise

• Create a method that splices 3 sounds
together to finish the sentence, “Guzdial is”.
–Make sure that you don’t copy past the end of the

current sound
–Be sure to include silence between words
–Can you make this method more general?

• How about a method to splice a sound into
the middle of another sound?
–Take starting point in target for splice

based on slides by Barb Ericson,
Georgia Institute of Technology

Reversing a Sound

• To reverse a sound
–Create a copy of the original sound

• Sound orig = new Sound(this.getFileName());
–Then loop starting the sourceIndex at the last

index in the source and the targetIndex at the first
index in the target
• Decrement the sourceIndex each time
• Increment the targetIndex each time

500 | 400 | 300 | 200 | 100

100 | 200 | 300 | 400 | 500 sourceIndex

targetIndex

based on slides by Barb Ericson,
Georgia Institute of Technology

Reversing Method
public void reverse()
{
 Sound orig = new Sound(this.getFileName());
 int length = this.getLength();

 // loop through the samples
 for (int targetIndex = 0, sourceIndex = length - 1;
 targetIndex < length && sourceIndex >= 0;
 targetIndex++, sourceIndex--)
 this.setSampleValueAt(targetIndex,
 orig.getSampleValueAt(sourceIndex));
}

based on slides by Barb Ericson,
Georgia Institute of Technology

Testing the Reverse Method

String file = FileChooser.getMediaPath(
 “thisisatest.wav”);
Sound s = new Sound(file);
s.explore();
s.reverse();
s.explore();

based on slides by Barb Ericson,
Georgia Institute of Technology

Reverse Part of a Sound Exercise

• Reverse just the second half of a sound
–Start the targetIndex at the length / 2
–Start the sourceIndex at the length – 1
–Loop while the targetIndex < length

100 | 200 | 500 | 400 | 300

100 | 200 | 300 | 400 | 500 sourceIndex

targetIndex

based on slides by Barb Ericson,
Georgia Institute of Technology

Mirror a Sound

• Copy the first half of the sound to the second
half
–And reverse the sounds in the second half
–This is very similar to mirroring a picture

• Calculate the midpoint (length / 2)
• Start the source index at 0 and copy from index to
length – index -1

• While index < midpoint

100 | 200 | 300 | 400 | 500

100 | 200 | 300 | 200 | 100

midpoint

based on slides by Barb Ericson,
Georgia Institute of Technology

Mirror Sound Method
public void mirrorFrontToBack()
{
 int length = this.getLength(); // save the length
 int mirrorPoint = length / 2; // mirror around this
 int value = 0; // hold the current value

 // loop from 1 to mirrorPoint
 for (int i = 0; i < mirrorPoint; i++)
 {
 value = this.getSampleValueAt(i);
 this.setSampleValueAt(length – i - 1,value);
 }
}

based on slides by Barb Ericson,
Georgia Institute of Technology

Testing Mirror Method

Sound s = new
Sound(FileChooser.getMediaPath(

 "croak.wav"));
s.explore();
s.mirrorFrontToBack();
s.explore();

based on slides by Barb Ericson,
Georgia Institute of Technology

Mirror Back to Front Exercise

• Write a method to mirror from the back to the
front
–Copy the back half of the sound reversed to the

front

100 | 200 | 300 | 400 | 500

500 | 400 | 300 | 400 | 500

midpoint

based on slides by Barb Ericson,
Georgia Institute of Technology

Blend Sounds

• Like blending pictures we can blend two
sounds:
–Copy the first 20,000 values of sound1
–Copy from both by adding .5 * sound1 value and .

5 * sound2 value
–Copy the next 20,000 values of sound 2

based on slides by Barb Ericson,
Georgia Institute of Technology

Blend Sounds Method
public void blendSounds()
{
 Sound sound1 =
 new Sound(FileChooser.getMediaPath("aah.wav"));
 Sound sound2 =
 new Sound(FileChooser.getMediaPath("bassoon-

c4.wav"));
 int value = 0;

 // copy the first 20,000 samples from sound1 into
target

 for (int index=0; index < 20000; index++)
 this.setSampleValueAt(index,
 sound1.getSampleValueAt(index));

based on slides by Barb Ericson,
Georgia Institute of Technology

Blend Sounds - Continued
 // copy the next 20,000 samples from sound1 and blend that
 // with the first 20,000 samples from sound2
 for (int index = 0; index < 20000; index++)
 {
 value = (int) ((sound1.getSampleValueAt(index + 20000) *
 0.5) +
 (sound2.getSampleValueAt(index) * 0.5));
 this.setSampleValueAt(index + 20000,value);
 }

 // copy the next 20,000 samples from sound2 into the target
 for (int index=20000; index < 40000; index++)
 this.setSampleValueAt(index + 20000,
 sound2.getSampleValueAt(index));
 }

based on slides by Barb Ericson,
Georgia Institute of Technology

Testing Blend Sounds

String fileName =
FileChooser.getMediaPath(

 "sec3silence.wav");
Sound target = new Sound(fileName);
target.explore();
target.blendSounds()
target.explore();

Modify Blend Sounds Exercise

• Create another blendSounds method
–That takes the file name of the sounds to blend
–And a value to start the blend at and another to

stop the blend at
–Modify the original blendSounds method to call

this one

Overloading Methods

• You can have several methods with the
same name
–As long as the parameter list is different

• In number of parameters
• And/or types of parameters

–blendSounds()
–blendSound(String name1, String name2, int

startBlend, int endBlend)

NOTE: This is different from
Python where the name of
the function or method is on
the part before the “(“.

Changing the Sound Frequency
• The frequency of a wave is

the number of cycles per
second (cps), or Hertz (Hz)
– (Complex sounds have more

than one frequency in them.)
• Our perception of pitch is

related (logarithmically) to
changes in frequency
– Higher frequencies are

perceived as higher pitches
– We can hear between 5 Hz

and 20,000 Hz (20 kHz)
– A above middle C is 440 Hz

Double the Frequency

• If we take every other sample we double the
frequency of the sound
–Completes two cycles instead of one in the same

time
–It will sound higher

100 | 200 | 300 | 400 | 500 100 | 300 | 500 | 0 | 0

Double Frequency Method
public void doubleFreq()
{
 // make a copy of the original sound
 Sound s = new Sound(this.getFileName());

 /* loop and increment target index
 * by one but source index by 2,
 * and set target value
 * to the copy of the original sound
 */

Double Frequency - Continued
 for (int sourceIndex=0, targetIndex = 0;
 sourceIndex < this.getLength();
 sourceIndex=sourceIndex+2, targetIndex++)
 this.setSampleValueAt(targetIndex,
 s.getSampleValueAt(sourceIndex));

 // clear out the rest of this sound to silence (0)
 for (int i = this.getLength() / 2;
 i < this.getLength();
 i++)
 this.setSampleValueAt(i,0);

 }

Test Double Frequency

Sound s = new
Sound(FileChooser.getMediaPath(

 "c4.wav"));
s.explore();
s.doubleFreq();
s.explore();

Challenge

• Create a method that will take every third
sample
–Will this sound higher or lower?

• Can you make this method more general?
–By passing in the amount to add to the source

index each time?

Halving the Frequency

• We can copy each source value twice to half
the frequency
–Only get through half a cycle in the same time we

used to get through a full cycle
–It will sound lower

• This is the same algorithm that we used to
scale up a picture

100 | 200 | 300 | 400 | 500 100 | 100 | 200 | 200 | 300

Halve Frequency Method
 public void halveFreq()
 {
 // make a copy of the original sound
 Sound s = new Sound(this.getFileName());

 /* loop through the sound and increment target index
 * by one but source index by 0.5 and set target value
 * to the copy of the original sound
 */
 for (double sourceIndex=0, targetIndex = 0;
 targetIndex < this.getLength();
 sourceIndex=sourceIndex+0.5, targetIndex++)
 this.setSampleValueAt((int) targetIndex,
 s.getSampleValueAt((int) sourceIndex));

 }

Notice that “for” loops do NOT
require “++” !

Testing Halve Frequency

Sound s = new
Sound(FileChooser.getMediaPath(

 "c4.wav"));
s.explore();
s.halveFreq();
s.explore();

Change Frequency Exercise

• Write a method that will copy each sound
value 4 times to the target
–Will the new sound be higher or lower?

• Can you make this more general?
–By passing in the number of times to copy the

source value
–Try it with 3 times and check the index values to

make sure that you are doing it right

Last Homework Project - “Ohce”

• Due Thursday December 11 @ 10 am
• Echo backward - the echo gets progressively

louder until the actual sound is heard. (Or,
just like an echo only before instead of after.)

74

Coming Attractions

• For Friday:
–final code for group projects due 4:20 PM

• upload

75

1 2 3 4 5 6 7 8

A
Burton Talley Davies Bowers Demase Burke Currin Thayer

Highman D'Augustine Taylor Knowles Ho Maier Malhotra Heitzer

B
Regione Zhang Howell Ha Tran Roithmayr Pham Walsh

Messick Rhyner Nassery Dahiya Duffy Merrow Slack Hughes

