
CS 1124 Media
computation

Lecture 12.2 November 12, 2008
Steve Harrison

Use a loop!
Our first picture recipe

def decreaseRed(picture):
 for p in getPixels(picture):
 value=getRed(p)
 setRed(p,value*0.5)

Used like this:
>>> file=pickAFile() <--- barbara.jpg
>>> picture=makePicture(file)
>>> show(picture)
>>> decreaseRed(picture)
>>> repaint(picture)

The Picture Class
• To make doing media manipulation easier

• We have created a set of classes for you to use

• Picture, ColorChooser, FileChooser, Pixel, etc

• These are not part of the Java language

• But were created at Georgia Tech

• You should have added the directory that has these
classes to your classpath

• Already done to work with Turtles

• This tells Java where to find the classes

Creating a Picture Object

• To create a picture object from a file

• We need the full name of the file

• We can use FilePicker.pickAFile() to get that

• Class method that returns the full file name as a String

• We need to ask the Picture class to create the picture
object

• Using the data from the specified file

• new Picture(fileName)

• If we want to see the picture we have created

• We will ask the picture object to show itself

Naming each Piece

• First let’s pick a file name and save a reference to the
resulting String object in a variable called fileName

• String fileName = FileChooser.pickAFile();

• Next, let’s create a Picture object and save a reference to
it in a variable called pictureObj

• Picture pictureObj = new Picture(fileName);

• Now send the show() message to the picture object

• pictureObj.show();

Naming Each Part

Doing it all at Once
• You can create a picture object

• by passing it the result of using the FileChooser to
pickAFile()

• and then tell that picture object to show itself

• All in one line

new Picture(FileChooser.pickAFile()).show();

But then you don’t have a way to refer to the file or
picture again.

• Try both ways of creating a picture object and showing it.

• new Picture(FileChooser.pickAFile()).show();

• And do each piece one step at a time naming the result of
each method

• String fileName = FileChooser.pickAFile();

• System.out.println(fileName);

• Picture picture = new Picture(fileName);

• System.out.println(picture);

• picture.show();

Show Picture Exercise

• Try both ways of creating a picture object and showing it.

• new Picture(FileChooser.pickAFile()).show();

• And do each piece one step at a time naming the result of
each method

• String fileName = FileChooser.pickAFile();

• System.out.println(fileName);

• Picture picture = new Picture(fileName);

• System.out.println(picture);

• picture.show();

>>> file=pickAFile()

Show Picture Exercise

• Try both ways of creating a picture object and showing it.

• new Picture(FileChooser.pickAFile()).show();

• And do each piece one step at a time naming the result of
each method

• String fileName = FileChooser.pickAFile();

• System.out.println(fileName);

• Picture picture = new Picture(fileName);

• System.out.println(picture);

• picture.show();

>>> file=pickAFile()

Show Picture Exercise

>>> print file

• Try both ways of creating a picture object and showing it.

• new Picture(FileChooser.pickAFile()).show();

• And do each piece one step at a time naming the result of
each method

• String fileName = FileChooser.pickAFile();

• System.out.println(fileName);

• Picture picture = new Picture(fileName);

• System.out.println(picture);

• picture.show();

>>> file=pickAFile()

Show Picture Exercise

>>> print file

>>> picture=makePicture(file)

• Try both ways of creating a picture object and showing it.

• new Picture(FileChooser.pickAFile()).show();

• And do each piece one step at a time naming the result of
each method

• String fileName = FileChooser.pickAFile();

• System.out.println(fileName);

• Picture picture = new Picture(fileName);

• System.out.println(picture);

• picture.show();

>>> file=pickAFile()

Show Picture Exercise

>>> print file

>>> picture=makePicture(file)

>>> print picture

• Try both ways of creating a picture object and showing it.

• new Picture(FileChooser.pickAFile()).show();

• And do each piece one step at a time naming the result of
each method

• String fileName = FileChooser.pickAFile();

• System.out.println(fileName);

• Picture picture = new Picture(fileName);

• System.out.println(picture);

• picture.show();

>>> file=pickAFile()

Show Picture Exercise

>>> show(picture)

>>> print file

>>> picture=makePicture(file)

>>> print picture

What Data does a Picture Object Have?

• A picture object has an array of pixel objects

• That it read from the JPEG file

• It knows the picture width

 pictureObj.getWidth()

• It knows the picture height

 pictureObj.getHeight()

• It knows how to return an array of pixels

 Pixel[] pixelArray = pictureObj.getPixels()

Picture Exercise
• Create a picture in DrJava

• get the pictures width, height, and number of pixels
String fileName = FileChooser.pickAFile();
Picture pictureObj = new Picture(fileName);
int width = pictureObj.getWidth();
System.out.println(“The picture width is “ + width);
int height = pictureObj.getHeight();
System.out.println(“The picture height is “ +

height);
Pixel[] pixelArray = pictureObj.getPixels();
System.out.println(pixelArray.length + “ pixels”);

Pixel Objects
• Each pixel has a red, green, and blue value

• getRed(), getGreen(), getBlue()

• setRed(v), setGreen(v), setBlue(v)

• Each pixel knows the location it was in the
picture object

• getX(), get(Y)

• You can also get and set the color at the pixel

• getColor(), setColor(color)

Color Objects
• There is a class defined in Java that represents color

• The Color class in the package java.awt

• To use the class you must either

• import java.awt.Color;

• Use the full name java.awt.Color

• You can create a color object by giving the red, green,
and blue values for it

Color colorObj = new Color(255,10,125);

Predefined Colors
• The Color class has defined

class constants for many
colors

• Color.red, Color.green,
Color.blue, Color.black,
Color.white, Color.yellow,
Color.gray, Color.orange,
Color.pink, Color.cyan,
Color.magenta

• Or you can use all uppercase
names

• Color.RED, Color.BLUE,
Color.BLACK, …

Getting and Setting Pixel
Colors

• To get a pixel’s color as a color object

Color color1 = pixelObj.getColor();

int red = color1.getRed();

int green = color1.getGreen();

int blue = color1.getBlue();

• To set a pixel’s color using a new color object

red = 20;

green = 30;

blue = 100;

Color color2 = new Color(red,green,blue);

pixelObj.setColor(color2);

Using Classes in Packages
• All classes in the Java language are in packages

• You can use any class in java.lang

• System, Math, Object

• For classes in other packages you need to import
them

• import java.awt.Color;

• Import java.awt.*; //import all classes in this package

• To use the short name: Color

• Or use the fully qualified name
packageName.ClassName

• java.awt.Color

Undefined Class Error
• If you forget to import a

class

• Yet, you use the short name for
the class

• It won’t compile

• Undefined class error

• Undefined class errors
mean

• You need to import the class

• Or you misspelled the class

• Or used the wrong case

Pixel Exercise
• In DrJava

• Pick a file and create a picture object

• Get the array of pixels from the picture object

• Get the 1st pixel from the array of pixels

• Pixel pixelObj = pixelArray[0]; // 0 is first one

• Get the red, green, and blue value for this pixel

• Get the x and y location of this pixel

• Get the color of this pixel

• Get the red, green, and blue values of the color

Changing Pixel Colors
• There are two ways to change the color of a

pixel in a picture

• Set the red, green, and blue values individually

• pixelObj.setRed(value),

• pixelObj.setGreen(value),

• pixelObj.setBlue(value),

• Or set the color

• pixelObj.setColor(colorObj)

• But, you won’t see any change in the picture

• Until you ask it to repaint: pictureObj.repaint();

Changing a Color
• The Color class has methods for making a color object

• Lighter

• colorObj.brighter();

• Darker

• colorObj.darker();

• Example
> import java.awt.Color;
> Color testColor = new Color(168,131,105);
> System.out.println(testColor);
java.awt.Color[r=168,g=131,b=105]
> testColor = testColor.darker();
> System.out.println(testColor);
java.awt.Color[r=117,g=91,b=73]
> testColor = testColor.brighter();
> System.out.println(testColor);
java.awt.Color[r=167,g=130,b=104]

Rounding Errors

• Notice that when you made the color darker and
then lighter the resulting color was slightly off of
the original

• The change is calculated in floating point

• The result is stored in integer form

• The decimal part is lost

• Rounding errors also occur because of the
limited storage for floating point numbers

• We can’t store all the digits in some numbers

Pictures are 2-D Arrays
• They have columns and

rows (x and y)

• You can get a pixel at a
particular x and y
location

• Pixel pixelObj =
picture.getPixel(x,y);

• The columns and rows

• start with index 0

• end with num -1

X

Y

Changing a Picture
Exercise

> import java.awt.Color;
> String fileName = "C:/intro-prog-java/mediasources/caterpillar.jpg";
> Picture pictureObj = new Picture(fileName);
> pictureObj.show();
> pictureObj.getPixel(10,100).setColor(Color.black);
> pictureObj.getPixel(11,100).setColor(Color.black);
> pictureObj.getPixel(12,100).setColor(Color.black);
> pictureObj.getPixel(13,100).setColor(Color.black);
> pictureObj.getPixel(14,100).setColor(Color.black);
> pictureObj.getPixel(15,100).setColor(Color.black);
> pictureObj.getPixel(16,100).setColor(Color.black);
> pictureObj.getPixel(17,100).setColor(Color.black);
> pictureObj.getPixel(18,100).setColor(Color.black);
> pictureObj.getPixel(19,100).setColor(Color.black);
> pictureObj.repaint();

How do we Know if it
Worked?

• A very important part of programming is testing
the result

• Just because code compiles and runs without
error doesn’t mean it is correct

• There could be an error in the logic

• It could fail under certain conditions

• It could even return the correct answer but for
the wrong reason

The Picture Explorer

• Tool that creates a copy
of the current picture
and lets you explore it

• See the color, x, and y
values at the cursor

• To use the tool on a
picture object

–pictureObj.explore();

• Use it to see if the
colors have changed

Changing the Red in a
Picture

• One way to change a picture is to reduce the
amount of red in it

• What if we want to decrease it by half?

• If we have a value of 200 what should the new
value be?

• How do we reduce any value by half?

• What if we want to increase it by 25%?

• If we have a value of 100 what should the new
value be?

• How do we increase any value by 25%?

We Need a Loop
(Iteration)

• A way to execute a series of statements in the
body of the loop

• With something changing each time the
statements are executed

• Different pixel to change

• And some way to tell when we are done with
the repetition

• Some test to see if the loop should stop

• Done with all of the items in an array

For-each Loop
• In Java if we want to do something to each item

in an array

• We can use the for-each loop

• for (Type : variableName arrayName)

{

 // body of the loop

}

• Which means for each element in the array do
the statements in the body of the loop

Method to Decrease Red
• Loop through all the pixels in an array of Pixel objects and change

the red in each

public void decreaseRed()

 {

 Pixel[] pixelArray = this.getPixels();

 int value = 0;

 // loop through all the pixels in the array

 for (Pixel pixelObj : pixelArray)

 {

 // get the red value

 value = pixelObj.getRed();

 // decrease the red value by 50% (1/2)

 value = value / 2;

 // set the red value of the current pixel to the new value

 pixelObj.setRed(value);

 }

 }

The body of the loop is in {}

def decreaseRed(picture):
 for p in getPixels(picture):
 value=getRed(p)
 setRed(p,value*0.5)

Objects send Messages
• Objects don’t “tell” each other what to do

• They “ask” each other to do things

• Objects can refuse to do what they are asked

• The object must protect it’s data

• Not let it get into an incorrect state

• A bank account object shouldn’t let you
withdraw more money that you have in
the account

Creating a Method
• We can name a block of Java statements and then

execute them again

• By declaring a method in a class

• The syntax for declaring a method is

–visibility returnType name(parameterList)

• Visibility determines access
• Usually public or private

• The return type is the type of thing returned

• If nothing is returned use the keyword void
• Name the method starting with a lowercase word and

uppercasing the first letter of each additional word

Example Method
public void drawSquare()

 {

 this.turnRight();

 this.forward(30);

 this.turnRight();

 this.forward(30);

 this.turnRight();

 this.forward(30);

 this.turnRight();

 this.forward(30);

 }

• The visibility is public
• The keyword void means

this method doesn’t return
a value

• The method name is
drawSquare

• There are no parameters
– Notice that the parentheses

are still required
• The keyword this means

the object this method was
invoked on

Adding a Method to a Class

1. Open
file

Turtle.java

2. Type the
method

before the
last } // end

3. Compile
open files

Compile Errors

Clicking on the
error takes you
to the code and

highlights it.

Case
matters in

Java!
turnright
isn’t the
same as

turnRight

Try the New Method

• Compiling resets the interactions pane

• Clearing all variables

• But you can still use the up arrow to pull up previous
statements

• You will need to create a world and turtle again

World world1 = new World();

Turtle turtle1 = new Turtle(world1);

turtle1.forward(50);

turtle1.drawSquare();

turtle1.turn(30);

turtle1.drawSquare();

Saving the Interactions History in DrJava

• You can save the interactions history into a script

• And optionally edit it first before you save it

• Click on Tools then on Save Interactions History

• And then later load and execute the statements in the
script

• Click on Tools and Load Interactions History as
Script

• Use the next button to see the next statement
and click on the execute button to execute it

Better Method to Draw
a Square

• A method to draw a square
public void drawSquare()
 {
 int width = 30;
 this.turnRight();
 this.forward(width);
 this.turnRight();
 this.forward(width);
 this.turnRight();
 this.forward(width);
 this.turnRight();
 this.forward(width);
 }

• We added a local variable for the
width
– Only known inside the method

• This makes it easier to change
the width of the square

• But, we still have to recompile to
draw a different size square

Testing the Better
Method

• Type the following in the interactions pane
World world1 = new World();
Turtle turtle1 = new Turtle(world1);
turtle1.forward(50);
turtle1.drawSquare();
turtle1.turn(30);
turtle1.drawSquare();

• Or use the saved script if you saved the last
interactions history

Passing a Parameter
public void drawSquare(int width)

 {

 this.turnRight();

 this.forward(width);

 this.turnRight();

 this.forward(width);

 this.turnRight();

 this.forward(width);

 this.turnRight();

 this.forward(width);

• Parameter lists
specify the type of
thing passed and a
name to use to refer
to the value in the
method

• The type of this
parameter is int

• The name is width
• Values are passed by

making a copy of the
passed value

Testing with a
Parameter

• Type the following in the interactions pane

World world1 = new World();

Turtle turtle1 = new Turtle(world1);

turtle1.forward(50);

turtle1.drawSquare(30);

turtle1.turn(30);

How Does That Work?
• When you ask turtle1 to drawSquare(30)

turtle1.drawSquare(30);

• It will ask the Turtle Class if it has a method
drawSquare that takes an int value

• And start executing that method

• The parameter width will have the value of 30 during the
executing of the method

• The this keyword refers to turtle1

• When you ask turtle1 to drawSquare(50)

Challenges

• Create a method for drawing a rectangle

• Pass the width and height

• Create a method for drawing an equilateral
triangle

• all sides have the same length

• Pass in the length

• Create a method for drawing a diamond

Testing decreaseRed
• Add decreaseRed to Picture.java

• Before the last }

• Compile Picture.java

• Click on Compile All Button

• Type the following in the interactions pane
> String fileName = FileChooser.pickAFile();
> Picture pictObj = new Picture(fileName);
> pictObj.explore();
> pictObj.increaseRed();
> pictObj.explore();

How This Works
• First we have the method declaration

 public void decreaseRed()

• This is a public method that doesn't return anything and the
name is decreaseRed. This method does not take any
parameters since there is nothing in the ()

• Next we start the body of the method
 {

• Inside of the body of the method are the statements to be
executed when the method is called (executed)

• Next we declare an array of pixels and get them from the
current Picture object
 Pixel[] pixelArray = this.getPixels();

• Next we declare a primitive variable to hold the current
red value at the pixel

 int value = 0;

How This Works - Cont
• Next start the for-each loop

 for (Pixel pixelObj : pixelArray)

 {

• Each time through the loop set the variable pixelObj to refer to the next Pixel
object in the array of Pixel objects called pixelArray. Execute the statements in
the body of the loop.

• Get the red value from the pixelObj
 value = pixelObj.getRed();

• Decrease the red by 1/2
 value = value / 2;

• Set the red value at the pixelObj to the new value
 pixelObj.setRed(value);

• End the for-each loop body and the body of the method
 }

 }

Exercise
• Write a method increaseRed() to loop through

all the pixels in a picture and double the red
values

• Multiply by 2

• To try this method do the following:

• String fileName = FileChooser.pickAFile();

• Picture pictObj = new Picture(fileName);

• pictObj.explore();

• pictObj.increaseRed();

• pictObj.explore();

While Loops
• In Java one way to repeat a

block of statements while
an expression is true is to
use a while loop

• Create a counter and set it
to the start value

• Check that the counter is
less then the stop value

• If it is less than execute the
statements in the loop

• Add one to the counter and
go back to check that the
counter is less than the stop
value

While Loop Syntax
• Adding up the numbers from 1 to 100

int total = 0;

int num = 1;

while (num <= 100)

{

total = total + num;

num = num + 1;

}

System.out.println(total);

While Loop Syntax
• Adding up the numbers from 1 to 100

int total = 0; // declare and initialize the total
int num = 1; // declare and init the number

while (num <= 100) // do while num <= 100
{

total = total + num; // add num to total
num = num + 1; // increment the num

}
System.out.println(total); // print the total

• Adding up the numbers from 1 to 100

int total = 0;

int num = 1;

while (num <= 100)

{

total = total + num;

num = num + 1;

}

System.out.println(total);

Parts of a While Loop

Project

• Project 3 - Signs in Pictures -- in Java

Coming Attractions

• Monday:

• quiz (on www.javabat.com)

• next Friday:

• Project 8 - Java picture due

http://www.javabat.com
http://www.javabat.com

