
CS 1124 Media
computation

Lecture 11.1 Nov 3, 2008
Steve Harrison

Today

Objects

Other Languages

Javascript

Today

Objects

Other Languages

Javascript

Object-oriented programming

 Define and describe the objects of the world
 Noun-oriented
 Focus on the domain of the program
 The object-oriented analyst asks herself: “The program I’m

trying to write relates to the real world in some way. What are
the things in the real world that this program relates to?”

Example to motivate objects:
SlideShow
Let’s build a program to show a slide show.

It shows a picture.
Then plays a corresponding sound.

We’ll use the introduced-but-never-used blockingPlay() to
make the execution wait until the sound is done.

Slideshow
def playslideshow():
 pic = makePicture(getMediaPath("barbara.jpg"))
 snd = makeSound(getMediaPath("bassoon-c4.wav"))
 show(pic)
 blockingPlay(snd)
 pic = makePicture(getMediaPath("beach.jpg"))
 snd = makeSound(getMediaPath("bassoon-e4.wav"))
 show(pic)
 blockingPlay(snd)
 pic = makePicture(getMediaPath("santa.jpg"))
 snd = makeSound(getMediaPath("bassoon-g4.wav"))
 show(pic)
 blockingPlay(snd)
 pic = makePicture(getMediaPath("jungle2.jpg"))
 snd = makeSound(getMediaPath("bassoon-c4.wav"))
 show(pic)
 blockingPlay(snd)

What’s wrong with this?

From Procedural Abstraction:
We have duplicated code.
We should get rid of it.

From Object-Oriented Programming:
We have an object: A slide (with sound).

Defining an object
 Objects know things.

 Data that is internal to the object.
 We often call those instance variables.

 Objects can do things.
 Behavior that is internal to the object.
 We call functions that are specific to an object methods.

 But you knew that one already.

 We access both of these using dot notation
 object.variable
 object.method()

The Slide Object

What does a slide know?
It has a picture.
It has a sound

What can a slide do?
Show itself.

Show its picture.
(Blocking) Play its sound.

Classes

Objects are instances of classes in many object-
oriented languages.
Including Smalltalk, Java, JavaScript, and Python.

A class defines the data and behavior of an object.
A class defines what all instances of that class know

and can do.

We need to define a slide class
 Easy enough:
class slide:
 def someMethod(self):
 print "The slide class has one method."

 Methods are defined like functions, but indented within the
class definition.
 We’ll explain self in just a few minutes

 What comes next?
 Some method for creating new slides.
 Some method for playing slides.

Creating new instances

We are going to create new instances by calling the
class name as if it were a function.
That will automatically create a new instance of the

class.

Creating a slide
 Let’s create a slide and give it a picture and sound instance

variables.
>>> slide1=slide()
>>> slide1.someMethod()
The slide class has one method.
>>> slide1.picture =

makePicture(getMediaPath("barbara.jpg"))
>>> slide1.sound = makeSound(getMediaPath("bassoon-

c4.wav"))

Defining a show() method

To show a slide, we want to show() the picture and
blockingPlay() the sound.

We define the function as part of the class block.
So this is a def that gets indented.

Defining the method show()

Why self?
When we say

object.method(),
Python finds the method

in the object’s class,
then calls it with the
object as an input.

Python style is to call
that self.
It’s the object itself.

class slide:
 def show(self):
 show(self.picture)
 blockingPlay(self.sound)

Now we can show our slide

>>> slide1.show()
We execute the method using the same dot notation

we’ve seen previously.
Does just what you’d expect it to do.

Shows the picture.
Plays the sound.

Making it simpler

Can we get rid of those picture and sound
assignments?

What if we could call slide as if it were a real
function, with inputs?
Then we could pass in the picture and sound filenames

as inputs.
We can do this, by defining what Java calls a

constructor.
A method that builds your object for you.

Making instances more flexibly
 To create new instances with inputs, we must define a

function named __init__
 That’s underscore-underscore-i-n-i-t-underscore-underscore.

 DOUBLE UNDERSCORE BEFORE AND AFTER
 It’s the predefined name for a method that initializes new

objects.

 Our __init__ function will take three inputs:
 self, because all methods take that.
 And a picture and sound filename.

 We’ll create the pictures and sounds in the method.

Our whole slide class

class slide:
 def __init__(self, pictureFile,soundFile):
 self.picture = makePicture(pictureFile)
 self.sound = makeSound(soundFile)

 def show(self):
 show(self.picture)
 blockingPlay(self.sound)

The playslideshow()
def playslideshow():
 slide1 = slide(getMediaPath("barbara.jpg"), getMediaPath("bassoon-c4.wav"))
 slide2 = slide(getMediaPath("beach.jpg"),getMediaPath("bassoon-e4.wav"))
 slide3 = slide(getMediaPath("santa.jpg"),getMediaPath("bassoon-g4.wav"))
 slide4 = slide(getMediaPath("jungle2.jpg"),getMediaPath("bassoon-c4.wav"))
 slide1.show()
 slide2.show()
 slide3.show()
 slide4.show()

The value of objects
 Is this program easier to write?

 It certainly has less replication of code.
 It does combine the data and behavior of slides in one place.

 If we want to change how slides work, we change them in the definition
of slides.

 We call that encapsulation: Combining data and behavior related to that
data.

 Being able to use other objects with our objects is powerful.
 Being able to make lists of objects, to be able to use objects (like picture

and sound) in our objects.
 We call that aggregation: Combining objects, so that there are objects in

other objects.

If slides are objects, what about
a slide player?
class slidePlayer:
 ?????

We’ve been doing this already, of
course.
You’ve been using objects already, everywhere.
Pictures, sounds, samples, colors—these are all

objects.
We’ve been doing aggregation.

We’ve worked with or talked about lists of pictures,
sounds, pixels, and samples

The functions that we’ve been providing merely
cover up the underlying objects.

Using picture as an object

>>> pic=makePicture(getMediaPath("barbara.jpg"))
>>> pic.show()

Slides and pictures both show()

Did you notice that we can say slide1.show() and
pic.show()?

Show() generally means, in both contexts, “show
the object.”

But what’s really happening is different in each
context!
Slides show pictures and play sounds.
Pictures just show themselves.

Another powerful aspect of objects:
Polymorphism
 When the same method name can be applied to more than

one object, we call that method polymorphic
 From the Greek “many shaped”

 A polymorphic method is very powerful for the programmer.
 You don’t need to know exactly what method is being executed.
 You don’t even need to know exactly what object it is that

you’re telling to show()
 You just know your goal: Show this object!

Uncovering the objects

This is how the show() function is defined in JES:
def show(picture):
 if not picture.__class__ == Picture:
 print "show(picture): Input is not a picture"
 raise ValueError
 picture.show()
 You can ignore the raise and if

 The key point is that the function is simply executing the
method.

Pictures and Colors have
polymorphic methods, too
>>> pic=makePicture(getMediaPath("barbara.jpg"))
>>> pic.show()
>>> pixel = getPixel(pic,100,200)
>>> print pixel.getRed()
73
>>> color = pixel.getColor()
>>> print color.getRed()
73

We can get/set components at either
level
getRed, getBlue, getGreen, setRed, setBlue,

setGreen
Are all defined for both colors and pixels

Why didn’t we define the functions to work with
either?
It’s somewhat confusing to have a globally-available

function take two kinds of things as input: Colors or
pixels.

But it’s completely reasonable to have a method of the
same name in more than one object.

More methods than functions

In general, there are many more methods defined in
JES than there are functions.

Most specifically, there are a whole bunch of
methods for drawing onto a picture that aren’t
defined as functions.
It’s easier to deal with the complexity at the level of

methods than functions.
The names for the functions get more and more

complicated, where polymorphism lets them be simple
and contextualized.

Overview of graphics methods

pic.addRect(color,x,y,width,height)
pic.addRectFilled(color,x,y,width,height)
pic.addOval(color,x,y,width,height)
pic.addOvalFilled(color,x,y,width,height)

Arcs

pic.addArc(color,x,y,width,height,startangle,arcangl
e)

pic.addArcFilled(color,x,y,width,height,startangle,a
rcangle)
Make an arc for arcangle degrees, where startangle is

the starting point. 0 = 3 o’clock.
Positive arc is counter-clockwise, negative is clockwise

Center of the circle is middle of the rectangle (x,y)
with given height and width

Text

Text can have style, but only limited.
Java limits it for cross-platform compatibility.

pic.addText(color,x,y,string)
pic.addTextWithStyle(color,x,y,string,style)

Style is made by makeStyle(font,emph,size)
Font is sansSerif, serf, or mono
Emph is italic, bold, or plain.

You can get italic, bold by italic+bold
Size is a point size

Rectangles: Coloring lines and fills

>>> pic=makePicture
(getMediaPath("640x480.jpg"))

>>> pic.addRectFilled (orange,
10,10,100,100)

>>> pic.addRect (blue,
200,200,50,50)

>>> pic.show()
>>> pic.writeTo("newrects.jpg")

writeTo() is polymorphic for both
sounds and pictures.

Ovals
>>> pic=makePicture

(getMediaPath("640x480.jpg"))
>>> pic.addOval (green,

200,200,50,50)
>>> pic.addOvalFilled (magenta,

10,10,100,100)
>>> pic.show()
>>> pic.writeTo("ovals.jpg")

Arcs and colored lines
>>> pic=makePicture

(getMediaPath("640x480.jpg"))
>>> pic.addArc(red,10,10,100,100,5,45)
>>> pic.show()
>>> pic.addArcFilled (green,

200,100,200,100,1,90)
>>> pic.repaint()
>>> pic.addLine(blue,400,400,600,400)
>>> pic.repaint()
>>> pic.writeTo("arcs-lines.jpg")

Text examples
>>> pic=makePicture

(getMediaPath("640x480.jpg"))
>>> pic.addText(red,10,100,"This is a

red string!")
>>> pic.addTextWithStyle (green,

10,200,"This is a bold, italic,
green, large string",
makeStyle(sansSerif,bold+italic,
18))

>>> pic.addTextWithStyle (blue,
10,300,"This is a blue, larger,
italic-only, serif string",
makeStyle(serif,italic,24))

>>> pic.writeTo("text.jpg")

Yes, you may use any of these in your
homework, if you want.

Sunset using methods
 Any of our older functions will

work just fine with methods.

def makeSunset(picture):
 for p in getPixels(picture):
 p.setBlue(p.getBlue()*0.7)
 p.setGreen(p.getGreen()*0.7)

Backwards using methods
def backwards(filename):
 source = makeSound(filename)
 target = makeSound(filename)

 sourceIndex = source.getLength()
 for targetIndex in range(1,target.getLength()+1):
 # The method is getSampleValue, not getSampleValueAt
 sourceValue =source.getSampleValue(sourceIndex)
 # The method is setSampleValue, not setSampleValueAt
 target.setSampleValue(targetIndex,sourceValue)
 sourceIndex = sourceIndex - 1

 return target

To get the sample object,
snd.getSampleObjectAt(index)

Why objects?
 An important role for objects is to reduce the number of

names that you have to remember.
 writeSoundTo() and writePictureTo() vs.

sound.writeTo() and picture.writeTo()
 They also make it easier to change data and behavior

together.
 Think about changing the name of an instance variable. What

functions do you need to change? Odds are good that they’re
the ones right next to where you’re changing the variable.

 Most significant power is in aggregation: Combining
objects

Python objects vs. other objects

One of the key ideas for objects was “not messing
with the innards.”

Not true in Python.
We can always get at instance variables of objects.

It is true in other object-oriented languages.
In Java or Smalltalk, instance variables are only

accessible through methods (getPixel) or through
special declarations (“This variable is public!”)

Inheritance
 We can declare one class to be inherited by another class.
 It provides instant polymorphism.

 The child class immediately gets all the data and behavior of
the parent class.

 The child can then add more than the parent class had.
 This is called making the child a specialization of the parent.
 A 3-D rectangle might know/do all that a rectangle does, plus

some more:

class rectangle3D(rectangle):

Inheritance is a tradeoff

Inheritance is talked about a lot in the object-
oriented world.
It does reduce even further duplication of code.
If you have two classes that will have many the same

methods, then set up inheritance.

But in actual practice, inheritance doesn’t get used
all that much, and can be confusing.

When should you use objects?

Define your own objects when you have:
Data in groups, like both pictures and sounds.
Behavior that you want to define over that group.

Use existing objects:
Always—they’re very powerful!
Unless you’re not comfortable with dot notation and

the idea of methods.
Then functions work just fine.

Using map with slides

Slides are now just objects, like any other kind of
object in Python.

They can be in lists, for example.
Which means that we can use map.
We need a function:
def showSlide(aslide):
 aslide.show()

PlaySlideShow with Map
def playslideshow():
 slide1 = slide(getMediaPath("barbara.jpg"), getMediaPath("bassoon-

c4.wav"))
 slide2 = slide(getMediaPath("beach.jpg"),getMediaPath("bassoon-e4.wav"))
 slide3 = slide(getMediaPath("santa.jpg"),getMediaPath("bassoon-g4.wav"))
 slide4 = slide(getMediaPath("jungle2.jpg"),getMediaPath("bassoon-c4.wav"))
 map(showSlide,[slide1,slide2,slide3,slide4])

Today

Objects

Other Languages

Javascript

What do other languages look like?

We call the language “look” its syntax
Python is a fairly traditional language in terms of

syntax.
Languages like Scheme and Squeak are significantly

different.
Some points of difference:

Whether or not variables have to be declared before
first use.

Details of how individual lines are written.
Details of how blocks are defined.

Today

Objects

Other Languages

Javascript

JavaScript
 JavaScript is meant to be a scripting language, like Python.

 Scripting languages are meant for non-professional
programmers to solve simple tasks.

 It’s designed to look like Java to ease the transition in either
way.

 JavaScript can be used by the web server (used on the
computer accessed via the Internet), or it can be used within
an HTML page.
 If it’s within the HTML page, it’s actually executed by the user’s

browser.
 We call that client side JavaScript.

JavaScript syntax: Variables

Variables must be declared before use.
You can’t just say:

a = 12
You can either say:

var a = 12;
Or:

var a;
a = 12;

In other languages, you might also declare the
variable’s type

int a=12;

JavaScript syntax: Blocks

Blocks are delimited with curly braces.

function test()
{
 document.writeln("This is a test");
}

JavaScript syntax: Individual
statements
Lots of differences:

function instead of def
End lines with semicolons “;”

(But lines can have returns in the middle of them.)
The for statement is numeric (mostly) and has

different parts to it.
You use write or writeln instead of print

But they’re mostly detail changes.
The basic operation of JavaScript is not unlike Python.

JavaScript is all about objects

Just about every function is actually a method.
For example, there is no global print.
There is a function write or writeln

Writeln adds a new line (‘\n’) at the end.
But these aren’t global functions.

To write into the document, you use document.write()
document.write() is a method on the HTML document

itself.

Embedding JavaScript inside HTML

JavaScript sits inside of HTML pages.
You wrap <script> </script> tags around the

JavaScript.

You can have <script> tags in two kinds of places.
Inside the <head></head> tags to define functions

used elsewhere.
Inside the body, where the scripts are actually

executed.

Our Simple Web Page
<!DOCTYPE HTML PUBLIC "-//W3C//

DTD HTML 4.01 Transition//EN"
"http://wwww.w3.org/TR/html4/
loose.dtd">

<html>
<head>
<title>The Simplest Possible Web Page</

title>
</head>
<body>
<h1>A Simple Heading</h1>
<p>This is a very simple web page.</p>
<p><image src="mediasources/

barbara.jpg" />
</body>
</html>

Adding some simple JavaScript
<!DOCTYPE HTML PUBLIC "-//W3C//DTD

HTML 4.01 Transition//EN" "http://
wwww.w3.org/TR/html4/loose.dtd">

<html>
<head>
<title>The Simplest Possible Web Page</title>
<script>
function test()
{
 document.writeln("This is a test");
}
</script>
</head>
<body>
<h1>A Simple Heading</h1>
<p>This is a very simple web page.</p>
<p><image src="mediasources/barbara.jpg" />
<script> test() </script></p>
</body>
</html>

Going into detail on the function

<script>
function test()
{
 document.writeln("This is a test");
}
</script>
</head>
<body>
<h1>A Simple Heading</h1>
<p>This is a very simple web page.</p>
<p><image src="mediasources/barbara.jpg" />
<script> test() </script></p>

Here’s a function
named “test” with
no inputs, that only
writes out a string.

Here we
execute the
function.

Can also insert HTML
<script>
function insertHead()
{
 document.writeln("<h1>This is a test</h1>");
}
</script>
</head>
<body>
<h1>A Simple Heading</h1>
<p>This is a very simple web page.</p>
<p><image src="mediasources/barbara.jpg" />
</p>
<script> insertHead() </script>
</body>
</html>

Using loops
<html>
<head>
<title>The Simplest Possible Web Page</title>
<script>
function countToTen()
{
 document.write("");
 for (i=1; i<= 10; i++)
 {
 document.write("Item number: ",i);
 }
 document.write("");
}
</script>
</head>
<body>
<h1>A Simple Heading</h1>
<p>This is a very simple web page.</p>
<p><image src="mediasources/barbara.jpg" />
</p>
<script> countToTen() </script>
</body>
</html>

