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Virtual machines

interpreted, compiled and virtual machines



Why do we write programs?

One reason we write programs is to be able to do 
the same thing over-and-over again, without having 
to rehash the same steps in Photoshop each time.



Which one leads to shorter time 
overall?
 Interpreted version:

 100 times
 doGraphics(["b 100 200","b 101 200","b 102 200","l 102 200 102 

300","l 102 300 200 300"]) involving interpretation and drawing each 
time.

 Compiled version
 1 time makeGraphics(["b 100 200","b 101 200","b 102 200","l 

102 200 102 300","l 102 300 200 300"])
 Takes as much time (or more) as intepreting.
 But only once

 100 times running the very small graphics program.



Applications are compiled

Applications like Photoshop and Word are written 
in languages like C or C++
These languages are then compiled down to machine 

language.
That stuff that executes at a rate of 1.5 billion bytes 

per second.

Jython programs are interpreted.
Actually, they’re interpreted twice!



Java programs typically don’t 
compile to machine language.
Recall that every processor has its own machine 

language.
How, then, can you create a program that runs on any 

computer?

The people who invented Java also invented a 
make-believe processor—a virtual machine.
It doesn’t exist anywhere.
Java compiles to run on the virtual machine

The Java Virtual Machine (JVM)



What good is it to run only on a 
computer that doesn’t exist?!?
Machine language is a very simple language.
A program that interprets the machine language of 

some computer is not hard to write.
def VMinterpret(program):
  for instruction in program:
    if instruction == 1:  #It's a load
     ...
    if instruction == 2:  #It's an add
      ...



Java runs on everything…

Everything that has a JVM on it!
Each computer that can execute Java has an 

interpreter for the Java machine language.
That interpreter is usually compiled to machine 

language, so it’s very fast.
Interpreting Java machine is pretty easy

Takes only a small program
Devices as small as wristwatches can run Java VM 

interpreters.



What happens when you execute a 
Python statement in JES
 Your statement (like “show(canvas)”) is first compiled to 

Java!
 Really! You’re actually running Java, even though you wrote 

Python!

 Then, the Java is compiled into Java virtual machine 
language.
 Sometimes appears as a .class or .jar file.

 Then, the virtual machine language is interpreted by the 
JVM program.
 Which executes as a machine language program (a .exe)



Is it any wonder that Python 
programs in JES are slower?
Photoshop and Word simply execute.

At 1.5 Ghz and faster!

Python programs in JES are compiled, then 
compiled, then interpreted.
Three layers of software before you get down to the 

real speed of the computer!

It only works at all because 1.5 billion is a REALLY 
big number!



Why interpret?
 For us, to have a command area.

 Compiled languages don’t typically have a command area where 
you can print things and try out functions.

 Interpreted languages help the learner figure out what’s going 
on.

 For others, to maintain portability.
 Java can be compiled to machine language.

 In fact, some VMs will actually compile the virtual machine language 
for you while running—no special compilation needed.

 But once you do that, the result can only run on one kind of 
computer.

 Programs for Java (.jar files typically) can be moved from any 
kind of computer to any other kind of computer and just work.
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How sound works:
Acoustics, the physics of sound

 Sounds are waves of air 
pressure
 Sound comes in cycles
 The frequency of a wave is 

the number of cycles per 
second (cps), or Hertz

 (Complex sounds have more 
than one frequency in them.)

 The amplitude is the 
maximum height of the 
wave 



Sounds as arrays

 Samples are just stored one right after the other in the 
computer’s memory

 That’s called an array
 It’s an especially efficient (quickly accessed) memory 

structure
 each sample is two bytes 

(Like pixels in a picture)



Doubling the amplitude
def double( sound ) :
  for sample in getSamples(sound):

value = getSample(sample)
setSample(sample, value * 2)

    



Normalizing

 A few ways to think about “normalizing”:
 use the whole enchilada (don’t waste any bits...)
 make everything use the same scale (0 to 100%)

def normalize( sound ) :
  largest = 0
  for sample in getSamples(sound):

 largest = max( largest, getSample(sample) )
  multiplier = 32767.0 / largest
  for sample in getSamples(sound):

setSample(sample, getSample(sample) * multiplier)
    



Ranges, home on the

 What is a range, really?
 a sequence
 kind of like an array [1 ... N]

 or is it [1 ... N-1]?
 range( first element, upper bound + 1, increment)

 integers
 first element
 upper bound + 1

 a problem (remember black lines in EC?)
 increment
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 recipe 70
def sineWave( freq, amplitude ) :
  mySound = getMediaPath("sec1silence.wav")
  buildSin = makeSound(mySound)
  sr = getSamplingRate(buildSin)  # sampling rate
  interval = 1.0 / freq                         # interval of sample
  samplesPerCycle = interval * sr    # samples / cycle
  maxCycle = 2 * pi
  for pos in range( 1, getLength( buildSin ) + 1 ) :
    rawSample = sin(( pos / samplesPerCycle) * maxCycle)
    sampleVal = int( amplitude * rawSample )
    setSampleValueAt( buildSin, pos, sampleVal )
  return buildSin

Sine wave
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Square wave
 recipe 72
def squareWave( freq, amplitude ) :
  mySound = getMediaPath(“sec1silence.wav”)
  square = makeSound(mySound)
  samplingRate = getSamplingRate(square)   # sampling rate
  seconds = 1
  interval = 1.0 * seconds / freq                         # interval of sample
  samplesPerCycle = interval * samplingRate # samples / cycle
  samplesPerHalfCycle = int(samplesPerCycle / 2)
  sampleVal = amplitude
  i = 1
  for s in range( 1, getLength( square ) + 1 ) :
    if (i > samplesPerHalfCycle):
       sampleVal = sampleVal * -1
       i = 0
    setSampleValueAt( square,s, sampleVal )
    i = i + 1
  return square

20



 recipe 73, modified
def triangleWave( freq ) :
  amplitude = 6000
  samplingRate = 22050                                     # sampling rate
  seconds = 1
  triangle = makeEmptySound( seconds  )      # create a sound object (the book uses “sec1silence.wav”)
  interval = 1.0 * seconds / freq                         # interval of sample
  samplesPerCycle = interval * samplingRate # samples / cycle
  samplesPerHalfCycle = int(samplesPerCycle / 2)
  increment = int( amplitude / samplesPerHalfCycle )
  sampleVal = -amplitude
  i = 1
  for s in range( 1, samplingRate + 1 ) :
    if (i > samplesPerHalfCycle):
       increment = increment * -1
       i = 0
    sampleVal = sampleVal + increment
    setSampleValueAt( triangle, s, sampleVal ) 
    i = i + 1
  return triangle                                                # return the sound (the book says play)

Triangluar wave
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MIDI

 represent the sound waves
 .wav 
 our Jython sound functions

 OR represent the “instruments”
 MIDI: Musical Instrument Digital Interface

 used to connect audio (and some video) devices
 instruments: keyboards, synthesizers, drum machines
 synchronize events

 more compact representation
 Jython’s MIDI

 just plays the notes (alas)
 sounds like a piano

22
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Text

 Text is the universal medium
 We can convert any other media to a text 

representation.
 We can convert between media formats using text.
 Text is simple.

 Text is usually processed in an array—a long line 
of characters

 We refer to one of these long line of characters as a 
string.

COMPUTER SCIENCE
WAY OF THINKING



Strings
 Strings are defined with quote marks.
 Python actually supports three kinds of quotes:

>>> print 'this is a string'
this is a string
>>> print "this is a string"
this is a string
>>> print """this is a string"""
this is a string

 Use the right one that allows you to embed quote marks if you want
>>> phrase = "Monica's cat." 
>>> print phrase
Monica's cat.



Encodings for strings

 Strings are just arrays of characters
 In most cases, characters are just single bytes.

 The ASCII encoding standard maps between single 
byte values and the corresponding characters

 More recently, characters are two bytes.
 Unicode uses two bytes per characters so that there 

are encodings for glyphs (characters) of other 
languages

 Java uses Unicode.  The version of Python we are 
using is based in Java, so our strings are actually 
using Unicode.



Backslash escapes

 “\b” is backspace
 “\n” is a newline (like pressing the Enter key)
 “\t” is a tab
 “\uXXXX” is a Unicode character, where XXXX 

is a code and each X can be 0-9 or A-F.
 http://www.unicode.org/charts/
 Must precede the string with “u” for Unicode to work



Getting parts of strings

 We use the square bracket “[]” notation to get parts 
of strings.

 stringVariable[n] gives you the nth character in the 
string (but keep in mind the first one is the zero-
ith) 

 string[n:m] gives you the characters indexed by n 
through (but not including) index m.

So maybe its really the n+1th ...



Getting parts of strings
>>> helloStr = "Hello"
>>> print helloStr[1]
e
>>> print helloStr[0]
H
>>> print helloStr[2:4]
ll

H e l l o

0 1 2 3 4



Dot notation

 All data in Python are actually objects
 Objects not only store data, but they respond to 

special functions that only objects of the same type 
understand.

 We call these special functions methods
 Methods are functions known only to certain objects

 To execute a method, you use dot notation
 objectName.method()



Capitalize is a method known only to 
strings
>>> test="this is a test."
>>> print test.capitalize  # without the ()s a method 

will not execute
<builtin method 'capitalize'>
>>> print test.capitalize()
This is a test.
>>> print capitalize(test)
A local or global name could not be found.
NameError: capitalize
>>> print 'this is another test'.capitalize()
This is another test
>>> print 12.capitalize()
A syntax error is contained in the code -- I can't 

read it as Python.
Why?



Converting from strings to lists
>>> print letter.split(" ")
['Mr.', 'Mark', 'Guzdial', 'requests', 
'the', 'pleasure', 'of', 'your', 
'company...']

N.B. this split is splitting on a space.  
You can split on other characters too!



Lists

 We’ve seen lists before—that’s what range() returns.
 Lists are very powerful structures.

 Lists can contain strings, numbers, even other lists.
 They work very much like strings

 You get pieces out with []
 You can “add” lists together
 You can use for loops on them

 We can use them to process a variety of kinds of data.



Useful methods to use with lists:
But these don’t work with strings
 append(something) puts something in the list at the end.
 remove(something) removes something from the list, if 

it’s there.
 sort() puts the list in alphabetical order
 reverse() reverses the list
 count(something) tells you the number of times that 

something is in the list.
 max() and min() are functions that take a list as input and 

give you the maximum and minimum value in the list.
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HTML: Hypertext Markup 
Language
 Simple way of separating content from its display. 
 A markup language adds tags to regular text to 

identify its parts.
 A tag in HTML is enclosed by <angle brackets>.
 Most tags have a starting tag and an ending tag.

 A paragraph is identified by a <p> at its start and a 
</p> at its end.

 A heading is identified by a <h1> at its start and a </
h1> at its end.



The Simplest Web Page
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transition//EN" 

"http://wwww.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>The Simplest Possible Web Page</title>
</head>
<body>
<h1>A Simple Heading</h1>
<p>This is a paragraph in the simplest 
possible Web page.</p>
</body>
</html>

Yes, that whole 
thing is the 
DOCTYPE

No, it doesn’t matter 
where you put new 
lines, or extra spaces



Parts of a Web Page

 You start with a DOCTYPE
 It tells browsers what kind of language you’re using below.
 It’s gory and technical—copy it verbatim from somewhere.

 The whole document is enclosed in <html> </html> tags.
 The heading is enclosed with <head> </head>

 That’s where you put the <title> </title>
 The body is enclosed with <body> </body>

 That’s where you put <h1> headings and <p> paragraphs.



A tiny tutorial on hexadecimal

 You know decimal numbers (base 10)
 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16
 often written as 9dec

 You’ve heard a little about binary (base 2)
 0000,0001,0010,0011,0100,0101… 0010bin

 Octal is base 8
 0,1,2,3,4,5,6,7,10,11,12,13,14,15,16,17,20  01oct 

 Hexadecimal is base 16
 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F,10 (16 base 10)
 1Ahex



Riddle

40



Riddle

 Why is Halloween logical Christmas?

40



Riddle

 Why is Halloween logical Christmas?
 because 31oct = 25dec

40



Hexadecimal colors in HTML

 #000000 is black
 0 for red, 0 for green, 0 for blue
 or all bits set to 0

 #FFFFFF is white
 255 for red, 255 for green, 255 for blue
 or all bits set to 1

 #FF0000 is Red
 255 for red (FF), 0 for green, 0 for blue
 or 111111110000000000000000

 #0000FF is Blue
 0 for red, 0 for green, 255 for blue
 or 000000001111111100000000



Emphasizing your text

 There are six levels of headings defined in HTML.
 <h1>…<h6>
 Lower numbers are larger, more prominent.

 Styles
 <em>Emphasis</em>, <i>Italics</i>, and <b>Boldface</b>
 <big>Bigger font</big> and <small>Smaller font</small>
 <tt>Typewriter font</tt>
 <pre>Pre-formatted</pre>
 <blockquote>Blockquote</blockquote>
 <sup>Superscripts</sup> and <sub>Subscripts</sub>



Finer control: <font>
 Can control type face, color, or size
<body>
 <h1>A Simple Heading</h1>

 <p><font face="Helvetica">
  This is in helvetica
 </font></p>

 <p><font color="green">
  Happy Saint Patrick's Day!
 </font></p>

 <p><font size="+2">
  This is a bit bigger
 </font></p>

Can also use 
hexadecimal RGB 
specification here.



Breaking a line

 Line breaks are part of formatting, not content, so 
they were added grudgingly to HTML.

 Line breaks don’t have a closing tag, so include the 
ending “/” inside.
 <br />



Adding a break
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 

4.01 Transition//EN" "http://wwww.w3.org/TR/
html4/loose.dtd">

<html>

    <head>
        <title>The Simplest Possible Web Page</title>
    </head>

    <body>

        <h1>A Simple Heading</h1>

        <p>This is a paragraph in the simplest<br />
        possible Web page.</p>



Adding an image

 Like break, it’s a standalone tag.
 <img src="flower1.jpg" />

 What goes inside the quotes is the path to the image.
 If it’s in the same directory, don’t need to specify the path.
 If it’s in a subdirectory, you need to specify the subdirectory 

and the base name.
 You can walk a directory by going up to a parent directory with 

“..”
 You can also provide a complete URL to an image anywhere on 

the Web.



Creating links

 Links have two main parts to them:
 A destination URL.
 Something to be clicked on to go to the destination.

 The link tag is “a” for “anchor”
<a href="http://www.cc.gatech.edu/~mark.guzdial/">Mark Guzdial</a>



Images can be links!
<h1>A Simple Heading</h1>

<p>
    <a href="http://www.cc.gatech.edu/">

    <img src="http://www.cc.gatech.edu/
images/ main_files/goldmain_01.gif" />

</a>
</p>



Lists (not to be confused with Jython lists...)

 Ordered lists (numbered)
<ol>
 <li>First item</li>
 <li>Next item</li>
</ol>

 Unordered lists (bulleted)
<ul>
 <li>First item</li>
 <li>Second item</li>
</ul>



Tables
<table border="5">
<tr>
  <td>Column 1</td>
  <td>Column 2</td>
</tr>
<tr>
  <td>Element in column 1</td>
  <td>Element in column 2</td>
</tr>
</table>



There is lots more to HTML

 Frames
 Can have subwindows within a window with different 

HTML content.
 Anchors can have target frames.

 Divisions <div>
 Horizontal rules <hr />

 With different sizes, colors, shading, etc.

 Applets, Javascript, CSS, etc. 
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Top-down method

 Figure out what has to be done.
 These are called the requirements

 Refine the requirements until they describe, in 
English, what needs to be done in the program.
 Keep refining until you know how to write the 

program code for each statement in English.

 Step-by-step, convert the English requirements 
into program code.



Top-down Example

 Write a function called pay that takes in as input a 
number of hours worked and the hourly rate to be paid. 
Compute the gross pay as the hours times the rate. If the 
pay is< 100, charge a tax of 0.25 ; if the pay is >= 100 
and < 300, tax rate is 0.35 ; if the pay is >=300 and < 
400, tax rate is 0.45 ; if the pay is >= 400, tax rate is 
0.50 ; Compute a taxable amount as tax rate * gross ; 
Print the gross pay and the net pay (gross – taxable 
amount).



Top-down Example:
Refine into steps you can code
 Write a function called pay that takes in as input a number 

of hours worked and the hourly rate to be paid.
 Compute the gross pay as the hours times the rate. 
 If the pay is< 100, charge a tax of 0.25
 If the pay is >= 100 and < 300, tax rate is 0.35
 If the pay is >=300 and < 400, tax rate is 0.45
 If the pay is >= 400, tax rate is 0.50
 Compute a taxable amount as tax rate * gross
 Print the gross pay and the net pay (gross – taxable 

amount).



Convert to program code
 √ Write a function called pay that takes 

in as input a number of hours worked 
and the hourly rate to be paid.

 Compute the gross pay as the hours 
times the rate. 

 If the pay is< 100, charge a tax of 0.25
 If the pay is >= 100 and < 300, tax rate 

is 0.35
 If the pay is >=300 and < 400, tax rate is 

0.45
 If the pay is >= 400, tax rate is 0.50
 Compute a taxable amount as tax rate * 

gross
 Print the gross pay and the net pay 

(gross – taxable amount).

def pay(hours,rate):



Convert to program code
 √ Write a function called pay that takes 

in as input a number of hours worked 
and the hourly rate to be paid.

 √ Compute the gross pay as the hours 
times the rate. 

 If the pay is< 100, charge a tax of 0.25
 If the pay is >= 100 and < 300, tax rate 

is 0.35
 If the pay is >=300 and < 400, tax rate is 

0.45
 If the pay is >= 400, tax rate is 0.50
 Compute a taxable amount as tax rate * 

gross
 Print the gross pay and the net pay 

(gross – taxable amount).

def pay(hours,rate):
  gross = hours * rate
 



Convert to program code
 √ Write a function called pay that takes 

in as input a number of hours worked 
and the hourly rate to be paid.

 √ Compute the gross pay as the hours 
times the rate. 

 √ If the pay is< 100, charge a tax of 0.25
 If the pay is >= 100 and < 300, tax rate 

is 0.35
 If the pay is >=300 and < 400, tax rate is 

0.45
 If the pay is >= 400, tax rate is 0.50
 Compute a taxable amount as tax rate * 

gross
 Print the gross pay and the net pay 

(gross – taxable amount).

def pay(hours,rate):
  gross = hours * rate
  if pay < 100:
    tax = 0.25



Convert to program code
 √ Write a function called pay that takes 

in as input a number of hours worked 
and the hourly rate to be paid.

 √ Compute the gross pay as the hours 
times the rate. 

 √ If the pay is< 100, charge a tax of 0.25
 √ If the pay is >= 100 and < 300, tax 

rate is 0.35
 √ If the pay is >=300 and < 400, tax rate 

is 0.45
 √ If the pay is >= 400, tax rate is 0.50
 Compute a taxable amount as tax rate * 

gross
 Print the gross pay and the net pay 

(gross – taxable amount).

def pay(hours,rate):
  gross = hours * rate
  if pay < 100:
    tax = 0.25
  if 100 <= pay < 300:
    tax = 0.35
  if 300 <= pay < 400:
    tax = 0.45
  if pay >= 400:
    tax = 0.50



Convert to program code
 √ Write a function called pay that takes 

in as input a number of hours worked 
and the hourly rate to be paid.

 √ Compute the gross pay as the hours 
times the rate. 

 √ If the pay is< 100, charge a tax of 0.25
 √ If the pay is >= 100 and < 300, tax 

rate is 0.35
 √ If the pay is >=300 and < 400, tax rate 

is 0.45
 √ If the pay is >= 400, tax rate is 0.50
 √ Compute a taxable amount as tax rate 

* gross
 Print the gross pay and the net pay 

(gross – taxable amount).

def pay(hours,rate):
  gross = hours * rate
  if pay < 100:
    tax = 0.25
  if 100 <= pay < 300:
    tax = 0.35
  if 300 <= pay < 400:
    tax = 0.45
  if pay >= 400:
    tax = 0.50
  taxableAmount = gross * tax



Convert to program code
 √ Write a function called pay that takes 

in as input a number of hours worked 
and the hourly rate to be paid.

 √ Compute the gross pay as the hours 
times the rate. 

 √ If the pay is< 100, charge a tax of 0.25
 √ If the pay is >= 100 and < 300, tax 

rate is 0.35
 √ If the pay is >=300 and < 400, tax rate 

is 0.45
 √ If the pay is >= 400, tax rate is 0.50
 √ Compute a taxable amount as tax rate 

* gross
 √ Print the gross pay and the net pay 

(gross – taxable amount).

def pay(hours,rate):
  gross = hours * rate
  if pay < 100:
    tax = 0.25
  if 100 <= pay < 300:
    tax = 0.35
  if 300 <= pay < 400:
    tax = 0.45
  if pay >= 400:
    tax = 0.50
  taxableAmount = gross * tax
  print “Gross pay:”,gross
  print “Net pay:”,gross-taxableAmount



Why “top-down”?

 We start from the highest level of abstraction
 The requirements

 And work our way down to the most specificity
 To the code

 The opposite is “bottom-up”
 Top-down is the most common way that 

professionals design.
 It provides a well-defined process and can be tested 

throughout.



What’s “bottom-up”?

 Start with what you know, and keep adding to it 
until you’ve got your program.

 You frequently refer to programs you know.
 Frankly, you’re looking for as many pieces you can 

steal as possible!

 Take something and start modifying it
 AKA “Debugging your way into reality”.



How to understand a program

 Step 1: Walk the program
 Figure out what every line is doing, and

what every variable’s value is.
 At least, do this for the lines that are confusing to you.

 Step 2: Run the program
 Does it do what you think it’s doing?

 Step 3: Check the program
 Insert print statements to figure out what values are what in 

the program
 You can also use print statements to print out values like 

getSampleValueAt and getRed to figure out how IF’s are 
working.



How to understand a program

 Use the command area!
 Type commands to check on values, to see how functions 

work.
 Not sure what getSampleValueAt does?  Try it!
 Use showVars() to help, too.

 Step 4: Change the program
 Now, change the program in some interesting way

 Instead of all pixels, do only the pixels in part of the picture
 Run the program again.  Can you see the effect of your 

change?
 If you can change the program and understand why your 

change did what it did, you understand the program
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A very powerful idea: Recursion

Recursion is writing functions that call themselves.
When you write a recursive function, you write (at 

least) two pieces:
What to do if the input is the smallest possible datum,
What to do if the input is larger so that you:

(a) process one piece of the data
(b) call the function to deal with the rest.

SEE CHAPTER 14 FOR MORE ON RECURSION



Why use functional programming and 
recursion?
Can do a lot in very few lines.
Very useful techniques for dealing with hard 

problems.
ANY kind of loop (FOR, WHILE, and many others) 

can be implemented with recursion.
It’s the most flexible and powerful form of looping.



Factorial -- the classic recursive 
function

def factorial( number ) :
  # the “head”
  if number == 1 :
    return number
  # the “rest”
  else :
    return number * factorial( number - 1.0 )
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A recursive decreaseRed

def decreaseRed(alist):
  if alist == []:   #Empty
    return 
  setRed(alist[0], 

getRed(alist[0])*0.8)
  decreaseRed(alist[1:])

 If the list (of pixels) is empty, don’t 
do anything.
 Just return

 Otherwise, 
 Decrease the red in the first pixel.
 Call decreaseRed on the rest of the 

pixels.

 Call it like:
>>> decreaseRed(getPixels(pic)) 

This actually won’t work for reasonable-sized pictures—
takes up too much memory in Java. The reason is each time 
the “rest”, decreaseRed(alist[1:]), is called, it keeps a copy of 
the remainder alist[1:]. That gets big fast!



mid term review

Sound 
samples

Text
arrays and lists
object.method()
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studying

Look at programs

Changes programs

Write new ones



Coming attractions

Friday Lab
MidTerm II

open book
open computer
we will monitor internet traffic in room
multiple choice + 3 programs

Monday
read Chapters 13, 14, & 16 (skip 12 and 15)
quiz due 10:00 AM

Friday
HW 7 - Mind Reading Website due 10:00 AM


