
CS 1124 Media
computation

Lecture 10.2 October 29, 2008
Steve Harrison

Virtual machines

interpreted, compiled and virtual machines

Why do we write programs?

One reason we write programs is to be able to do
the same thing over-and-over again, without having
to rehash the same steps in Photoshop each time.

Which one leads to shorter time
overall?
 Interpreted version:

 100 times
 doGraphics(["b 100 200","b 101 200","b 102 200","l 102 200 102

300","l 102 300 200 300"]) involving interpretation and drawing each
time.

 Compiled version
 1 time makeGraphics(["b 100 200","b 101 200","b 102 200","l

102 200 102 300","l 102 300 200 300"])
 Takes as much time (or more) as intepreting.
 But only once

 100 times running the very small graphics program.

Applications are compiled

Applications like Photoshop and Word are written
in languages like C or C++
These languages are then compiled down to machine

language.
That stuff that executes at a rate of 1.5 billion bytes

per second.

Jython programs are interpreted.
Actually, they’re interpreted twice!

Java programs typically don’t
compile to machine language.
Recall that every processor has its own machine

language.
How, then, can you create a program that runs on any

computer?

The people who invented Java also invented a
make-believe processor—a virtual machine.
It doesn’t exist anywhere.
Java compiles to run on the virtual machine

The Java Virtual Machine (JVM)

What good is it to run only on a
computer that doesn’t exist?!?
Machine language is a very simple language.
A program that interprets the machine language of

some computer is not hard to write.
def VMinterpret(program):
 for instruction in program:
 if instruction == 1: #It's a load
 ...
 if instruction == 2: #It's an add
 ...

Java runs on everything…

Everything that has a JVM on it!
Each computer that can execute Java has an

interpreter for the Java machine language.
That interpreter is usually compiled to machine

language, so it’s very fast.
Interpreting Java machine is pretty easy

Takes only a small program
Devices as small as wristwatches can run Java VM

interpreters.

What happens when you execute a
Python statement in JES
 Your statement (like “show(canvas)”) is first compiled to

Java!
 Really! You’re actually running Java, even though you wrote

Python!

 Then, the Java is compiled into Java virtual machine
language.
 Sometimes appears as a .class or .jar file.

 Then, the virtual machine language is interpreted by the
JVM program.
 Which executes as a machine language program (a .exe)

Is it any wonder that Python
programs in JES are slower?
Photoshop and Word simply execute.

At 1.5 Ghz and faster!

Python programs in JES are compiled, then
compiled, then interpreted.
Three layers of software before you get down to the

real speed of the computer!

It only works at all because 1.5 billion is a REALLY
big number!

Why interpret?
 For us, to have a command area.

 Compiled languages don’t typically have a command area where
you can print things and try out functions.

 Interpreted languages help the learner figure out what’s going
on.

 For others, to maintain portability.
 Java can be compiled to machine language.

 In fact, some VMs will actually compile the virtual machine language
for you while running—no special compilation needed.

 But once you do that, the result can only run on one kind of
computer.

 Programs for Java (.jar files typically) can be moved from any
kind of computer to any other kind of computer and just work.

mid term review

Sound
samples

Text
arrays and lists
object.method()

Design and Problem-Solving
HTML
Recursion

mid term review

Sound
samples

Text
arrays and lists
object.method()

Design and Problem-Solving
HTML
Recursion

How sound works:
Acoustics, the physics of sound

 Sounds are waves of air
pressure
 Sound comes in cycles
 The frequency of a wave is

the number of cycles per
second (cps), or Hertz

 (Complex sounds have more
than one frequency in them.)

 The amplitude is the
maximum height of the
wave

Sounds as arrays

 Samples are just stored one right after the other in the
computer’s memory

 That’s called an array
 It’s an especially efficient (quickly accessed) memory

structure
 each sample is two bytes

(Like pixels in a picture)

Doubling the amplitude
def double(sound) :
 for sample in getSamples(sound):

value = getSample(sample)
setSample(sample, value * 2)

Normalizing

 A few ways to think about “normalizing”:
 use the whole enchilada (don’t waste any bits...)
 make everything use the same scale (0 to 100%)

def normalize(sound) :
 largest = 0
 for sample in getSamples(sound):

 largest = max(largest, getSample(sample))
 multiplier = 32767.0 / largest
 for sample in getSamples(sound):

setSample(sample, getSample(sample) * multiplier)

Ranges, home on the

 What is a range, really?
 a sequence
 kind of like an array [1 ... N]

 or is it [1 ... N-1]?
 range(first element, upper bound + 1, increment)

 integers
 first element
 upper bound + 1

 a problem (remember black lines in EC?)
 increment

18

 recipe 70
def sineWave(freq, amplitude) :
 mySound = getMediaPath("sec1silence.wav")
 buildSin = makeSound(mySound)
 sr = getSamplingRate(buildSin) # sampling rate
 interval = 1.0 / freq # interval of sample
 samplesPerCycle = interval * sr # samples / cycle
 maxCycle = 2 * pi
 for pos in range(1, getLength(buildSin) + 1) :
 rawSample = sin((pos / samplesPerCycle) * maxCycle)
 sampleVal = int(amplitude * rawSample)
 setSampleValueAt(buildSin, pos, sampleVal)
 return buildSin

Sine wave

19

Square wave
 recipe 72
def squareWave(freq, amplitude) :
 mySound = getMediaPath(“sec1silence.wav”)
 square = makeSound(mySound)
 samplingRate = getSamplingRate(square) # sampling rate
 seconds = 1
 interval = 1.0 * seconds / freq # interval of sample
 samplesPerCycle = interval * samplingRate # samples / cycle
 samplesPerHalfCycle = int(samplesPerCycle / 2)
 sampleVal = amplitude
 i = 1
 for s in range(1, getLength(square) + 1) :
 if (i > samplesPerHalfCycle):
 sampleVal = sampleVal * -1
 i = 0
 setSampleValueAt(square,s, sampleVal)
 i = i + 1
 return square

20

 recipe 73, modified
def triangleWave(freq) :
 amplitude = 6000
 samplingRate = 22050 # sampling rate
 seconds = 1
 triangle = makeEmptySound(seconds) # create a sound object (the book uses “sec1silence.wav”)
 interval = 1.0 * seconds / freq # interval of sample
 samplesPerCycle = interval * samplingRate # samples / cycle
 samplesPerHalfCycle = int(samplesPerCycle / 2)
 increment = int(amplitude / samplesPerHalfCycle)
 sampleVal = -amplitude
 i = 1
 for s in range(1, samplingRate + 1) :
 if (i > samplesPerHalfCycle):
 increment = increment * -1
 i = 0
 sampleVal = sampleVal + increment
 setSampleValueAt(triangle, s, sampleVal)
 i = i + 1
 return triangle # return the sound (the book says play)

Triangluar wave

21

MIDI

 represent the sound waves
 .wav
 our Jython sound functions

 OR represent the “instruments”
 MIDI: Musical Instrument Digital Interface

 used to connect audio (and some video) devices
 instruments: keyboards, synthesizers, drum machines
 synchronize events

 more compact representation
 Jython’s MIDI

 just plays the notes (alas)
 sounds like a piano

22

mid term review

Sound
samples

Text
arrays and lists
object.method()

HTML
Design and Problem-Solving
Recursion

Text

 Text is the universal medium
 We can convert any other media to a text

representation.
 We can convert between media formats using text.
 Text is simple.

 Text is usually processed in an array—a long line
of characters

 We refer to one of these long line of characters as a
string.

COMPUTER SCIENCE
WAY OF THINKING

Strings
 Strings are defined with quote marks.
 Python actually supports three kinds of quotes:

>>> print 'this is a string'
this is a string
>>> print "this is a string"
this is a string
>>> print """this is a string"""
this is a string

 Use the right one that allows you to embed quote marks if you want
>>> phrase = "Monica's cat."
>>> print phrase
Monica's cat.

Encodings for strings

 Strings are just arrays of characters
 In most cases, characters are just single bytes.

 The ASCII encoding standard maps between single
byte values and the corresponding characters

 More recently, characters are two bytes.
 Unicode uses two bytes per characters so that there

are encodings for glyphs (characters) of other
languages

 Java uses Unicode. The version of Python we are
using is based in Java, so our strings are actually
using Unicode.

Backslash escapes

 “\b” is backspace
 “\n” is a newline (like pressing the Enter key)
 “\t” is a tab
 “\uXXXX” is a Unicode character, where XXXX

is a code and each X can be 0-9 or A-F.
 http://www.unicode.org/charts/
 Must precede the string with “u” for Unicode to work

Getting parts of strings

 We use the square bracket “[]” notation to get parts
of strings.

 stringVariable[n] gives you the nth character in the
string (but keep in mind the first one is the zero-
ith)

 string[n:m] gives you the characters indexed by n
through (but not including) index m.

So maybe its really the n+1th ...

Getting parts of strings
>>> helloStr = "Hello"
>>> print helloStr[1]
e
>>> print helloStr[0]
H
>>> print helloStr[2:4]
ll

H e l l o

0 1 2 3 4

Dot notation

 All data in Python are actually objects
 Objects not only store data, but they respond to

special functions that only objects of the same type
understand.

 We call these special functions methods
 Methods are functions known only to certain objects

 To execute a method, you use dot notation
 objectName.method()

Capitalize is a method known only to
strings
>>> test="this is a test."
>>> print test.capitalize # without the ()s a method

will not execute
<builtin method 'capitalize'>
>>> print test.capitalize()
This is a test.
>>> print capitalize(test)
A local or global name could not be found.
NameError: capitalize
>>> print 'this is another test'.capitalize()
This is another test
>>> print 12.capitalize()
A syntax error is contained in the code -- I can't

read it as Python.
Why?

Converting from strings to lists
>>> print letter.split(" ")
['Mr.', 'Mark', 'Guzdial', 'requests',
'the', 'pleasure', 'of', 'your',
'company...']

N.B. this split is splitting on a space.
You can split on other characters too!

Lists

 We’ve seen lists before—that’s what range() returns.
 Lists are very powerful structures.

 Lists can contain strings, numbers, even other lists.
 They work very much like strings

 You get pieces out with []
 You can “add” lists together
 You can use for loops on them

 We can use them to process a variety of kinds of data.

Useful methods to use with lists:
But these don’t work with strings
 append(something) puts something in the list at the end.
 remove(something) removes something from the list, if

it’s there.
 sort() puts the list in alphabetical order
 reverse() reverses the list
 count(something) tells you the number of times that

something is in the list.
 max() and min() are functions that take a list as input and

give you the maximum and minimum value in the list.

mid term review

Sound
samples

Text
arrays and lists
object.method()

HTML
Design and Problem-Solving
Recursion

HTML: Hypertext Markup
Language
 Simple way of separating content from its display.
 A markup language adds tags to regular text to

identify its parts.
 A tag in HTML is enclosed by <angle brackets>.
 Most tags have a starting tag and an ending tag.

 A paragraph is identified by a <p> at its start and a
</p> at its end.

 A heading is identified by a <h1> at its start and a </
h1> at its end.

The Simplest Web Page
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transition//EN"

"http://wwww.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>The Simplest Possible Web Page</title>
</head>
<body>
<h1>A Simple Heading</h1>
<p>This is a paragraph in the simplest
possible Web page.</p>
</body>
</html>

Yes, that whole
thing is the
DOCTYPE

No, it doesn’t matter
where you put new
lines, or extra spaces

Parts of a Web Page

 You start with a DOCTYPE
 It tells browsers what kind of language you’re using below.
 It’s gory and technical—copy it verbatim from somewhere.

 The whole document is enclosed in <html> </html> tags.
 The heading is enclosed with <head> </head>

 That’s where you put the <title> </title>
 The body is enclosed with <body> </body>

 That’s where you put <h1> headings and <p> paragraphs.

A tiny tutorial on hexadecimal

 You know decimal numbers (base 10)
 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16
 often written as 9dec

 You’ve heard a little about binary (base 2)
 0000,0001,0010,0011,0100,0101… 0010bin

 Octal is base 8
 0,1,2,3,4,5,6,7,10,11,12,13,14,15,16,17,20 01oct

 Hexadecimal is base 16
 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F,10 (16 base 10)
 1Ahex

Riddle

40

Riddle

 Why is Halloween logical Christmas?

40

Riddle

 Why is Halloween logical Christmas?
 because 31oct = 25dec

40

Hexadecimal colors in HTML

 #000000 is black
 0 for red, 0 for green, 0 for blue
 or all bits set to 0

 #FFFFFF is white
 255 for red, 255 for green, 255 for blue
 or all bits set to 1

 #FF0000 is Red
 255 for red (FF), 0 for green, 0 for blue
 or 111111110000000000000000

 #0000FF is Blue
 0 for red, 0 for green, 255 for blue
 or 000000001111111100000000

Emphasizing your text

 There are six levels of headings defined in HTML.
 <h1>…<h6>
 Lower numbers are larger, more prominent.

 Styles
 Emphasis, <i>Italics</i>, and Boldface
 <big>Bigger font</big> and <small>Smaller font</small>
 <tt>Typewriter font</tt>
 <pre>Pre-formatted</pre>
 <blockquote>Blockquote</blockquote>
 ^{Superscripts} and _{Subscripts}

Finer control:
 Can control type face, color, or size
<body>
 <h1>A Simple Heading</h1>

 <p>
 This is in helvetica
 </p>

 <p>
 Happy Saint Patrick's Day!
 </p>

 <p>
 This is a bit bigger
 </p>

Can also use
hexadecimal RGB
specification here.

Breaking a line

 Line breaks are part of formatting, not content, so
they were added grudgingly to HTML.

 Line breaks don’t have a closing tag, so include the
ending “/” inside.


Adding a break
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML

4.01 Transition//EN" "http://wwww.w3.org/TR/
html4/loose.dtd">

<html>

 <head>
 <title>The Simplest Possible Web Page</title>
 </head>

 <body>

 <h1>A Simple Heading</h1>

 <p>This is a paragraph in the simplest

 possible Web page.</p>

Adding an image

 Like break, it’s a standalone tag.


 What goes inside the quotes is the path to the image.
 If it’s in the same directory, don’t need to specify the path.
 If it’s in a subdirectory, you need to specify the subdirectory

and the base name.
 You can walk a directory by going up to a parent directory with

“..”
 You can also provide a complete URL to an image anywhere on

the Web.

Creating links

 Links have two main parts to them:
 A destination URL.
 Something to be clicked on to go to the destination.

 The link tag is “a” for “anchor”
Mark Guzdial

Images can be links!
<h1>A Simple Heading</h1>

<p>

 <img src="http://www.cc.gatech.edu/
images/ main_files/goldmain_01.gif" />

</p>

Lists (not to be confused with Jython lists...)

 Ordered lists (numbered)

 First item
 Next item

 Unordered lists (bulleted)

 First item
 Second item

Tables
<table border="5">
<tr>
 <td>Column 1</td>
 <td>Column 2</td>
</tr>
<tr>
 <td>Element in column 1</td>
 <td>Element in column 2</td>
</tr>
</table>

There is lots more to HTML

 Frames
 Can have subwindows within a window with different

HTML content.
 Anchors can have target frames.

 Divisions <div>
 Horizontal rules <hr />

 With different sizes, colors, shading, etc.

 Applets, Javascript, CSS, etc.

mid term review

Sound
samples

Text
arrays and lists
object.method()

HTML
Design and Problem-Solving
Recursion

Top-down method

 Figure out what has to be done.
 These are called the requirements

 Refine the requirements until they describe, in
English, what needs to be done in the program.
 Keep refining until you know how to write the

program code for each statement in English.

 Step-by-step, convert the English requirements
into program code.

Top-down Example

 Write a function called pay that takes in as input a
number of hours worked and the hourly rate to be paid.
Compute the gross pay as the hours times the rate. If the
pay is< 100, charge a tax of 0.25 ; if the pay is >= 100
and < 300, tax rate is 0.35 ; if the pay is >=300 and <
400, tax rate is 0.45 ; if the pay is >= 400, tax rate is
0.50 ; Compute a taxable amount as tax rate * gross ;
Print the gross pay and the net pay (gross – taxable
amount).

Top-down Example:
Refine into steps you can code
 Write a function called pay that takes in as input a number

of hours worked and the hourly rate to be paid.
 Compute the gross pay as the hours times the rate.
 If the pay is< 100, charge a tax of 0.25
 If the pay is >= 100 and < 300, tax rate is 0.35
 If the pay is >=300 and < 400, tax rate is 0.45
 If the pay is >= 400, tax rate is 0.50
 Compute a taxable amount as tax rate * gross
 Print the gross pay and the net pay (gross – taxable

amount).

Convert to program code
 √ Write a function called pay that takes

in as input a number of hours worked
and the hourly rate to be paid.

 Compute the gross pay as the hours
times the rate.

 If the pay is< 100, charge a tax of 0.25
 If the pay is >= 100 and < 300, tax rate

is 0.35
 If the pay is >=300 and < 400, tax rate is

0.45
 If the pay is >= 400, tax rate is 0.50
 Compute a taxable amount as tax rate *

gross
 Print the gross pay and the net pay

(gross – taxable amount).

def pay(hours,rate):

Convert to program code
 √ Write a function called pay that takes

in as input a number of hours worked
and the hourly rate to be paid.

 √ Compute the gross pay as the hours
times the rate.

 If the pay is< 100, charge a tax of 0.25
 If the pay is >= 100 and < 300, tax rate

is 0.35
 If the pay is >=300 and < 400, tax rate is

0.45
 If the pay is >= 400, tax rate is 0.50
 Compute a taxable amount as tax rate *

gross
 Print the gross pay and the net pay

(gross – taxable amount).

def pay(hours,rate):
 gross = hours * rate

Convert to program code
 √ Write a function called pay that takes

in as input a number of hours worked
and the hourly rate to be paid.

 √ Compute the gross pay as the hours
times the rate.

 √ If the pay is< 100, charge a tax of 0.25
 If the pay is >= 100 and < 300, tax rate

is 0.35
 If the pay is >=300 and < 400, tax rate is

0.45
 If the pay is >= 400, tax rate is 0.50
 Compute a taxable amount as tax rate *

gross
 Print the gross pay and the net pay

(gross – taxable amount).

def pay(hours,rate):
 gross = hours * rate
 if pay < 100:
 tax = 0.25

Convert to program code
 √ Write a function called pay that takes

in as input a number of hours worked
and the hourly rate to be paid.

 √ Compute the gross pay as the hours
times the rate.

 √ If the pay is< 100, charge a tax of 0.25
 √ If the pay is >= 100 and < 300, tax

rate is 0.35
 √ If the pay is >=300 and < 400, tax rate

is 0.45
 √ If the pay is >= 400, tax rate is 0.50
 Compute a taxable amount as tax rate *

gross
 Print the gross pay and the net pay

(gross – taxable amount).

def pay(hours,rate):
 gross = hours * rate
 if pay < 100:
 tax = 0.25
 if 100 <= pay < 300:
 tax = 0.35
 if 300 <= pay < 400:
 tax = 0.45
 if pay >= 400:
 tax = 0.50

Convert to program code
 √ Write a function called pay that takes

in as input a number of hours worked
and the hourly rate to be paid.

 √ Compute the gross pay as the hours
times the rate.

 √ If the pay is< 100, charge a tax of 0.25
 √ If the pay is >= 100 and < 300, tax

rate is 0.35
 √ If the pay is >=300 and < 400, tax rate

is 0.45
 √ If the pay is >= 400, tax rate is 0.50
 √ Compute a taxable amount as tax rate

* gross
 Print the gross pay and the net pay

(gross – taxable amount).

def pay(hours,rate):
 gross = hours * rate
 if pay < 100:
 tax = 0.25
 if 100 <= pay < 300:
 tax = 0.35
 if 300 <= pay < 400:
 tax = 0.45
 if pay >= 400:
 tax = 0.50
 taxableAmount = gross * tax

Convert to program code
 √ Write a function called pay that takes

in as input a number of hours worked
and the hourly rate to be paid.

 √ Compute the gross pay as the hours
times the rate.

 √ If the pay is< 100, charge a tax of 0.25
 √ If the pay is >= 100 and < 300, tax

rate is 0.35
 √ If the pay is >=300 and < 400, tax rate

is 0.45
 √ If the pay is >= 400, tax rate is 0.50
 √ Compute a taxable amount as tax rate

* gross
 √ Print the gross pay and the net pay

(gross – taxable amount).

def pay(hours,rate):
 gross = hours * rate
 if pay < 100:
 tax = 0.25
 if 100 <= pay < 300:
 tax = 0.35
 if 300 <= pay < 400:
 tax = 0.45
 if pay >= 400:
 tax = 0.50
 taxableAmount = gross * tax
 print “Gross pay:”,gross
 print “Net pay:”,gross-taxableAmount

Why “top-down”?

 We start from the highest level of abstraction
 The requirements

 And work our way down to the most specificity
 To the code

 The opposite is “bottom-up”
 Top-down is the most common way that

professionals design.
 It provides a well-defined process and can be tested

throughout.

What’s “bottom-up”?

 Start with what you know, and keep adding to it
until you’ve got your program.

 You frequently refer to programs you know.
 Frankly, you’re looking for as many pieces you can

steal as possible!

 Take something and start modifying it
 AKA “Debugging your way into reality”.

How to understand a program

 Step 1: Walk the program
 Figure out what every line is doing, and

what every variable’s value is.
 At least, do this for the lines that are confusing to you.

 Step 2: Run the program
 Does it do what you think it’s doing?

 Step 3: Check the program
 Insert print statements to figure out what values are what in

the program
 You can also use print statements to print out values like

getSampleValueAt and getRed to figure out how IF’s are
working.

How to understand a program

 Use the command area!
 Type commands to check on values, to see how functions

work.
 Not sure what getSampleValueAt does? Try it!
 Use showVars() to help, too.

 Step 4: Change the program
 Now, change the program in some interesting way

 Instead of all pixels, do only the pixels in part of the picture
 Run the program again. Can you see the effect of your

change?
 If you can change the program and understand why your

change did what it did, you understand the program

mid term review

Sound
samples

Text
arrays and lists
object.method()

HTML
Design and Problem-Solving
Recursion

A very powerful idea: Recursion

Recursion is writing functions that call themselves.
When you write a recursive function, you write (at

least) two pieces:
What to do if the input is the smallest possible datum,
What to do if the input is larger so that you:

(a) process one piece of the data
(b) call the function to deal with the rest.

SEE CHAPTER 14 FOR MORE ON RECURSION

Why use functional programming and
recursion?
Can do a lot in very few lines.
Very useful techniques for dealing with hard

problems.
ANY kind of loop (FOR, WHILE, and many others)

can be implemented with recursion.
It’s the most flexible and powerful form of looping.

Factorial -- the classic recursive
function

def factorial(number) :
 # the “head”
 if number == 1 :
 return number
 # the “rest”
 else :
 return number * factorial(number - 1.0)

69

A recursive decreaseRed

def decreaseRed(alist):
 if alist == []: #Empty
 return
 setRed(alist[0],

getRed(alist[0])*0.8)
 decreaseRed(alist[1:])

 If the list (of pixels) is empty, don’t
do anything.
 Just return

 Otherwise,
 Decrease the red in the first pixel.
 Call decreaseRed on the rest of the

pixels.

 Call it like:
>>> decreaseRed(getPixels(pic))

This actually won’t work for reasonable-sized pictures—
takes up too much memory in Java. The reason is each time
the “rest”, decreaseRed(alist[1:]), is called, it keeps a copy of
the remainder alist[1:]. That gets big fast!

mid term review

Sound
samples

Text
arrays and lists
object.method()

HTML
Design and Problem-Solving
Recursion

studying

Look at programs

Changes programs

Write new ones

Coming attractions

Friday Lab
MidTerm II

open book
open computer
we will monitor internet traffic in room
multiple choice + 3 programs

Monday
read Chapters 13, 14, & 16 (skip 12 and 15)
quiz due 10:00 AM

Friday
HW 7 - Mind Reading Website due 10:00 AM

