
CS 1124 Media
computation

Lecture 10.1 October 27, 2008
Steve Harrison

Today

from split to databases

modules

Objects

interpreted vs. compiled

Today

from split to databases

modules

Objects

interpreted vs. compiled

From last time: split

>>> print letter.split(" ")
['Mr.', 'Mark', 'Guzdial', 'requests', 'the', 'pleasure', 'of',

'your', 'company...']

Extended Split Example
def phonebook():
 return """
Mary:893-0234:Realtor:
Fred:897-2033:Boulder crusher:
Barney:234-2342:Professional bowler:"""

def phones():
 phones = phonebook()
 phonelist = phones.split('\n')
 newphonelist = []
 for list in phonelist:
 newphonelist = newphonelist +

[list.split(":")]
 return newphonelist

def findPhone(person):
 for people in phones():
 if people[0] == person:
 print "Phone number

for",person,"is",people[
1]

Running the Phonebook
>>> print phonebook()

Mary:893-0234:Realtor:
Fred:897-2033:Boulder crusher:
Barney:234-2342:Professional bowler:
>>> print phones()
[[''], ['Mary', '893-0234', 'Realtor', ''], ['Fred', '897-2033', 'Boulder crusher', ''],

['Barney', '234-2342', 'Professional bowler', '']]
>>> findPhone('Fred')
Phone number for Fred is 897-2033

Today

from split to databases

modules

Objects

interpreted vs. compiled

Adding new capabilities: Modules

 What we need to do is to add capabilities to Python that we
haven’t seen so far.

 We do this by importing external modules.
 A module is a file with a bunch of additional functions and

objects defined within it.
 Some kind of module capability exists in virtually every

programming language.

 By importing the module, we make the module’s capabilities
available to our program.
 Literally, we are evaluating the module, as if we’d typed them

into our file.

An interesting module: Random
>>> import random
>>> for i in range(1,10):
... print random.random()
...
0.8211369314193928
0.6354266779703246
0.9460060163520159
0.904615696559684
0.33500464463254187
0.08124982126940594
0.0711481376807015
0.7255217307346048
0.2920541211845866

Randomly choosing words from a list

>>> for i in range(1,5):
... print random.choice(["Here", "is", "a", "list", "of",

"words", "in","random","order"])
...
list
a
Here
list

Randomly generating language

Given a list of nouns,
verbs that agree in tense and number,
and object phrases that all match the verb,

We can randomly take one from each to make
sentences.

Random sentence generator
import random

def sentence():
 nouns = ["Mark", "Adam", "Angela", "Larry", "Jose", "Matt", "Jim"]
 verbs = ["runs", "skips", "sings", "leaps", "jumps", "climbs", "argues",

"giggles"]
 phrases = ["in a tree", "over a log", "very loudly", "around the bush", "while

reading the Technique"]
 phrases = phrases + ["very badly", "while skipping","instead of grading",

"while typing on the CoWeb."]
 print random.choice(nouns), random.choice(verbs), random.choice(phrases)

Running the sentence generator

>>> sentence()
Jose leaps while reading the Technique
>>> sentence()
Jim skips while typing on the CoWeb.
>>> sentence()
Matt sings very loudly
>>> sentence()
Adam sings in a tree
>>> sentence()
Adam sings around the bush
>>> sentence()
Angela runs while typing on the CoWeb.
>>> sentence()
Angela sings around the bush
>>> sentence()
Jose runs very badly

Today

more dot.notation() examples

modules

Objects

interpreted vs. compiled

History of Objects: Where they came
from
Start of the Story: Late 60's and Early 70's

 Windows are made of glass, mice are undesirable rodents
 Good programming = Procedural Abstraction

 That’s basically what we’ve been doing—procedural-oriented
programming

 It’s essentially Verb-oriented
 We’re defining “How to” swap backgrounds, increase red,

decrease volume, etc.

Object-oriented programming

 First goal: Define and describe the objects of the world
 Noun-oriented
 Focus on the domain of the program
 The object-oriented analyst asks herself: “The program I’m

trying to write relates to the real world in some way. What are
the things in the real world that this program relates to?”

 Example: Imagine you’re building an O-O Banner
 What are the objects?
 Students, transcripts, classes, catalog, major-requirements,

grades, rooms…

Alan Kay

U. Utah PhD student in 1966
Studied Sketchpad, the first object-oriented drawing

program
Studied Simula, a programming language designed to

make simulations (e.g., to allow you to simulate a
factory floor to see if the flow of materials worked well
before you actually built it)

Saw “objects” as the future of computer science
The way to build software better, more robustly,

handle complexity better.

Kay’s Insights

Think of the “Computer” as
collection of Networked Computers
Each one does its own thing and just

communicates with others

All software is simulating the real
world
Therefore, it should be “noun-oriented”

since the world is filled with nouns.

Biology as model for objects

Birth of Objects

 Objects as models of real world entities
 Objects as Cells

 Independent, indivisible, interacting—in standard ways
 Scales well

 Complexity: Distributed responsibility
 Robustness: Independent
 Supporting growth: Same mechanism everywhere
 Reuse: Provide services, just like in real world

Created various languages to try out idea:
A. Kay: Smalltalk & Squeak
others: Java, objective C, ...

We’ve been doing object-oriented
programming already
You’ve been using objects already, everywhere.
Pictures, sounds, samples, colors—these are all

objects.
The functions that we’ve been providing merely

cover up the underlying objects.

Using picture as an object
>>>
pic=makePicture(getMediaPath("barbara.jp
g"))

>>> pic.show()

show(pic) or pic.show()
what is the difference?

Consider this

22

results = operation(data)

dataToo = anotherOne(results)

= data

What if operation needs to calculate some
temporary value needed or anotherOne?

What if we mess up and pass the wrong data to
anotherOne?

State information shared between functions.

What if instead of having functions like this:
result = function(data)

 ...we instead put the data round the function?
result = data.function()

And what if the data could keep variables stored
internally, like local variables in a function?

Then...
data.operation()
data.anotherOne()

What if...?

23

We move the data to the outside

24

results = operation(data)

results = data.operation()

Now we can keep state between calls.
The results of one operation can be
available to the next call.

For now, we will see how to use objects,
later we will define new ones.

HEY! What is “state”?

State ...
Have you ever used “undo”?
“State” is a stable condition where all the variables

have known contents.

25

More methods than functions

In general, there are many more methods defined in
JES than there are functions.

Most specifically, there are a whole bunch of
methods for drawing onto a picture that aren’t
defined as functions.
It’s easier to deal with the complexity at the level of

methods than functions.
The names for the functions get more and more

complicated, where polymorphism lets them be simple
and contextualized.

Today

from split to databases

modules

Objects

interpreted vs. compiled

Big speed differences

Many of the techniques we’ve learned take no time
at all in other applications

Select a figure in Word.
It’s automatically inverted as fast as you can wipe.

Color changes in Photoshop happen as you change
the slider
Increase or decrease red? Play with it and see it

happen just as fast as you can move the slider.

Where does the speed go?

Is it that Photoshop is so fast?
Or that Jython is so slow?
It’s some of both—it’s not a simple problem with an

obvious answer.
We’ll consider in these two lectures two issues:

How fast can computers get
What’s not computable, no matter how fast you go

What a computer really understands

Computers really do not understand Python, nor
Java, nor any other language.

The basic computer only understands one kind of
language: machine language.
Machine language consists of instructions to the

computer expressed in terms of values in bytes.
These instructions tell the computer to do very low-

level activities.

Machine language trips the right
switches
 The computer doesn’t really understand machine

language.
 The computer is just a machine, with lots of

switches that make data flow this way or that way.
 Machine language is just a bunch of switch

settings that cause the computer to do a bunch of
other switch settings.

 We interpret those switchings to be addition,
subtraction, loading, and storing.
 In the end, it’s all about encoding.

A byte of
switches

Assembler and machine language

Machine language looks just like a bunch of
numbers.

Assembler language is a set of words that
corresponds to the machine language.
It’s a one-to-one relationship.
A word of assembler equals one machine language

instruction, typically.
(Often, just a single byte.)

Each kind of processor has its own
machine language
 Apple computers typically

use CPU (processor) chips
called G4, G5, Intel Dual or
Quad Core.

 Computers running
Microsoft Windows use
Intel Pentium, Dual or Quad
Core processors or AMD
Athlon.

Each processor understands only its own machine language

Assembler instructions

Assembler instructions tell the computer to do
things like:
Store numbers into particular memory locations or into

special locations (variables) in the computer.
Test numbers for equality, greater-than, or less-than.
Add numbers together, or subtract them.

An example assembly language
program
LOAD #10,R0 ; Load special variable R0 with 10
LOAD #12,R1 ; Load special variable R1 with 12
SUM R0,R1 ; Add special variables R0 and R1
STOR R1,#45 ; Store the result into memory location #45

Recall that we talked about memory as a
long series of mailboxes in a mailroom.

Each one has a number (like #45).

The above is equivalent to Python’s:
b = 10 + 12

Assembler -> Machine
LOAD 10,R0 ; Load special variable R0 with 10
LOAD 12,R1 ; Load special variable R1 with 12
SUM R0,R1 ; Add special variables R0 and R1
STOR R1,#45 ; Store the result into memory location #45

Might appear in memory as just 12 bytes:
01 00 10
01 01 12
02 00 01
03 01 45

Another Example
 LOAD R1,#65536 ; Get a character from keyboard
 TEST R1,#13 ; Is it an ASCII 13 (Enter)?
 JUMPTRUE #32768 ; If true, go to another part of the program
 CALL #16384 ; If false, call func. to process the new line

Machine Language:
05 01 255 255
10 01 13
20 127 255
122 63 255

Devices are (often) also just memory

 A computer can interact with external devices (like displays,
microphones, and speakers) in lots of ways.

 Easiest way to understand it (and is often the actual way it’s
implemented) is to think about external devices as
corresponding to a memory location.
 Store a 255 into memory location 65542, and suddenly the red

component of the pixel at (101,345) on your screen is set to
maximum intensity.

 Everytime the computer reads memory location 897784, it’s a
new sample just read from the microphone.

 So the simple loads and stores handle multimedia, too.

Machine language is executed very
quickly
A mid-range laptop these days has a clock rate of

1.5 Gigahertz.
What that means exactly is hard to explain,

but let’s interpret it as processing 1.5 billion bytes
per second.

Those 12 bytes would execute inside the computer,
then, in 12/1,500,000,000th of a second!

Applications are typically compiled

Applications like Adobe Photoshop and Microsoft
Word are compiled.
This means that they execute in the computer as pure

machine language.
They execute at that level speed.

However, Python, Java, Scheme, and many other
languages are (in many cases) interpreted.
They execute at a slower speed.
Why? It’s the difference between translating

instructions and directly executing instructions.

An example
 Write a function doGraphics that will take a list as input. The function
doGraphics will start by creating a canvas from the 640x480.jpg file in the
mediasources folder. You will draw on the canvas according to the commands
in the input list.

Each element of the list will be a string. There will be two kinds of strings in
the list:

 "b 200 120" means to draw a black dot at x position 200 y position 120. The
numbers, of course, will change, but the command will always be a "b". You
can assume that the input numbers will always have three digits.

 "l 000 010 100 200" means to draw a line from position (0,10) to position
(100,200)

So an input list might look like: ["b 100 200","b 101 200","b 102 200","l 102
200 102 300"] (but have any number of elements).

One student’s solution
def doGraphics(mylist):
 canvas = makePicture(getMediaPath("640x480.jpg"))
 for i in mylist:
 if i[0] == "b":
 x = int(i[2:5])
 y = int(i[6:9])
 print "Drawing pixel at ",x,":",y
 setColor(getPixel(canvas, x,y),black)
 if i[0] =="l":
 x1 = int(i[2:5])
 y1 = int(i[6:9])
 x2 = int(i[10:13])
 y2 = int(i[14:17])
 print "Drawing line at",x1,y1,x2,y2
 addLine(canvas, x1, y1, x2, y2)
 return canvas

This program processes
each string in the
command list.

If the first character is
“b”, then the x and y
are pulled out, and a
pixel is set to black.

If the first character is
“l”, then the two
coordinates are pulled
out, and the line is
drawn.

Running doGraphics()
>>> canvas=doGraphics(["b 100

200","b 101 200","b 102 200","l
102 200 102 300","l 102 300
200 300"])

Drawing pixel at 100 : 200
Drawing pixel at 101 : 200
Drawing pixel at 102 : 200
Drawing line at 102 200 102 300
Drawing line at 102 300 200 300
>>> show(canvas)

We’ve invented a new language

["b 100 200","b 101 200","b 102 200","l 102 200
102 300","l 102 300 200 300"] is a program in a
new graphics programming language.

Postscript, PDF, Flash, and AutoCAD are not too
dissimilar from this.
There’s a language that, when interpreted, “draws” the

page, or the Flash animation, or the CAD drawing.
But it’s a slow language!

Would this run faster?
Does the exact same thing
def doGraphics():
 canvas =

makePicture(getMediaPath("640x480.jp
g"))

 setColor(getPixel(canvas, 100,200),black)
 setColor(getPixel(canvas, 101,200),black)
 setColor(getPixel(canvas, 102,200),black)
 addLine(canvas, 102,200,102,300)
 addLine(canvas, 102,300,200,300)
 show(canvas)
 return canvas

Which do you think will run faster?

def doGraphics(mylist):
 canvas =

makePicture(getMediaPath("640x480.jpg"))
 for i in mylist:
 if i[0] == "b":
 x = int(i[2:5])
 y = int(i[6:9])
 print "Drawing pixel at ",x,":",y
 setColor(getPixel(canvas, x,y),black)
 if i[0] =="l":
 x1 = int(i[2:5])
 y1 = int(i[6:9])
 x2 = int(i[10:13])
 y2 = int(i[14:17])
 print "Drawing line at",x1,y1,x2,y2
 addLine(canvas, x1, y1, x2, y2)
 return canvas

def doGraphics():
 canvas = makePicture(getMediaPath("640x480.jpg"))
 setColor(getPixel(canvas, 100,200),black)
 setColor(getPixel(canvas, 101,200),black)
 setColor(getPixel(canvas, 102,200),black)
 addLine(canvas, 102,200,102,300)
 addLine(canvas, 102,300,200,300)
 show(canvas)
 return canvas

Above just draws the picture.

The left one figures out
(interprets) the picture, then
draws it.

Could we generate that second
program?
What if we could write a function that:

Inputs ["b 100 200","b 101 200","b 102 200","l 102 200
102 300","l 102 300 200 300"]

Writes a file that is the Python version of that program.
def doGraphics():
 canvas = makePicture(getMediaPath("640x480.jpg"))
 setColor(getPixel(canvas, 100,200),black)
 setColor(getPixel(canvas, 101,200),black)
 setColor(getPixel(canvas, 102,200),black)
 addLine(canvas, 102,200,102,300)
 addLine(canvas, 102,300,200,300)
 show(canvas)
 return canvas

Introducing a compiler
def makeGraphics(mylist):
 file = open("graphics.py","wt")
 file.write('def doGraphics():\n')
 file.write(' canvas =

makePicture(getMediaPath("640x480.j
pg"))\n');

 for i in mylist:
 if i[0] == "b":
 x = int(i[2:5])
 y = int(i[6:9])
 print "Drawing pixel at ",x,":",y
 file.write(' setColor(getPixel(canvas,

'+str(x)+','+str(y)+'),black)\n')
 if i[0] =="l":
 x1 = int(i[2:5])
 y1 = int(i[6:9])
 x2 = int(i[10:13])
 y2 = int(i[14:17])
 print "Drawing line at",x1,y1,x2,y2

 file.write(' addLine(canvas,
'+str(x1)+','+str(y1)+','+
str(x2)+','+str(y2)+')\n')

 file.write(' show(canvas)\n')
 file.write(' return canvas\n')
 file.close()

Coming attractions

Friday Lab
MidTerm II

open book
open computer

next Monday
read Chapters 13, 14, & 16 (skip 12 and 13)
quiz due 10:00 AM

