
1
Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All

rights reserved. 0-13-148952-6

Chapter 8 Inheritance and Polymorphism

Prerequisites for Part II

Chapter 6 Objects and Classes

Chapter 7 Strings

Chapter 8 Inheritance and Polymorphism

Chapter 5 Arrays

Chapter 9 Abstract Classes and Interfaces

Chapter 10 Object-Oriented Modeling

Chapter 11 Getting Started with GUI Programming

Chapter 12 Event-Driven Programming

Chapter 15 Exceptions and Assertions

Chapter 16 Simple Input and Output

You can cover Exceptions and I/O after Chapter 8

You can cover GUI after Chapter 8

2
Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All

rights reserved. 0-13-148952-6

Objectives
� To develop a subclass from a superclass through inheritance (§8.2).

� To invoke the superclass’s constructors and methods using the super keyword
(§8.3).

� To override methods in the subclass (§8.4).

� To explore the useful methods (equals(Object), hashCode(), toString(),
finalize(), clone(), and getClass()) in the Object class (§8.5, §8.11 Optional).

� To comprehend polymorphism, dynamic binding, and generic programming
(§8.6).

� To describe casting and explain why explicit downcasting is necessary (§8.7).

� To understand the effect of hiding data fields and static methods (§8.8
Optional).

� To restrict access to data and methods using the protected visibility modifier
(§8.9).

� To declare constants, unmodifiable methods, and nonextendable class using
the final modifier (§8.10).

� To initialize data using initialization blocks and distinguish between instance
initialization and static initialization blocks (§8.12 Optioanl).

3
Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All

rights reserved. 0-13-148952-6

Superclasses and Subclasses

Circle Circle Methods Circle DataSuperclass

Inheritance

Cylinder
Circle Methods

Cylinder Methods

Circle Data

Cylinder Data
Subclass

Circle

-radius

+getRadius

+setRadius

+findArea

Cylinder

-length

+getLength

+setLength
+findVolume

SubclassSuperclass

UML Diagram

4
Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All

rights reserved. 0-13-148952-6

// Cylinder.java: Class definition for describing Cylinder

public class Cylinder extends Circle {

private double length = 1;

/** Return length */

public double getLength() {

return length;

}

/** Set length */

public void setLength(double length) {

this.length = length;

}

/** Return the volume of this cylinder */

public double findVolume() {

return findArea() * length;

}

}

Circle

-radius

+getRadius

+setRadius

+findArea

Cylinder

-length

+getLength

+setLength

+findVolume

SubclassSuperclass
supertype subtype

5
Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All

rights reserved. 0-13-148952-6

Cylinder cylinder = new Cylinder();

System.out.println("The length is " +

cylinder.getLength());

System.out.println("The radius is " +

cylinder.getRadius());

System.out.println("The volume of the cylinder is " +

cylinder.findVolume());

System.out.println("The area of the circle is " +

cylinder.findArea());

The length is 1.0

The radius is 1.0

The volume of the cylinder is 3.14159

The area of the circle is 3.14159

The output is

6
Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All

rights reserved. 0-13-148952-6

Using the Keyword super

� To call a superclass constructor

� To call a superclass method

The keyword super refers to the superclass

of the class in which super appears. This

keyword can be used in two ways:

7
Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All

rights reserved. 0-13-148952-6

CAUTION

You must use the keyword super to call the

superclass constructor. Invoking a

superclass constructor’s name in a subclass

causes a syntax error. Java requires that the

statement that uses the keyword super

appear first in the constructor.

8
Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All

rights reserved. 0-13-148952-6

NOTE

A constructor is used to construct an

instance of a class. Unlike properties and

methods, a superclass's constructors are not

inherited in the subclass. They can only be

invoked from the subclasses' constructors,

using the keyword super. If the keyword

super is not explicitly used, the superclass's

no-arg constructor is automatically

invoked.

9
Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All

rights reserved. 0-13-148952-6

Superclass’s Constructor Is Always Invoked

A constructor may invoke an overloaded constructor or its

superclass’s constructor. If none of them is invoked

explicitly, the compiler puts super() as the first statement

in the constructor. For example,

public Cylinder() {

}
is equivalent to

public Cylinder() {

 super();

}

 public A(double d) {

 // some statements

}

is equivalent to
public A(double d) {

 super();

 // some statements

}

10
Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All

rights reserved. 0-13-148952-6

Constructor Chaining

public class Faculty extends Employee {

public static void main(String[] args) {

new Faculty();

}

public Faculty() {

System.out.println("Faculty's no-arg constructor is invoked");

}

}

class Employee extends Person {

public Employee() {

this("Invoke Employee’s overloaded constructor");

System.out.println("Employee's no-arg constructor is invoked");

}

public Employee(String s) {

System.out.println(s);

}

}

class Person {

public Person() {

System.out.println("Person's no-arg constructor is invoked");

}

}

Constructing an instance of a class invokes all the superclasses’ constructors

along the inheritance chain. This is called constructor chaining.

11
Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All

rights reserved. 0-13-148952-6

Example on the Impact of a Superclass

without no-arg Constructor

public class Apple extends Fruit {

}

class Fruit {

public Fruit(String name) {

System.out.println("Fruit's constructor is invoked");

}

}

Find out the errors in the program:

12
Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All

rights reserved. 0-13-148952-6

Declaring a Subclass

A subclass extends properties and methods from the
superclass. You can also:

� Add new properties

� Add new methods

� Override the methods of the superclass

13
Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All

rights reserved. 0-13-148952-6

Overriding Methods in the Superclass

A subclass inherits methods from a superclass. Sometimes it is

necessary for the subclass to modify the implementation of a method

defined in the superclass. This is referred to as method overriding.

// Cylinder.java: New cylinder class that overrides the findArea()

// method defined in the circle class.

public class Cylinder extends Circle {

/** Return the surface area of this cylinder. The formula is

* 2 * circle area + cylinder body area

*/

public double findArea() {

return 2 * super.findArea() + 2 * getRadius() * Math.PI * length;

}

// Other methods are omitted

}
14

Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All

rights reserved. 0-13-148952-6

NOTE

An instance method can be overridden only

if it is accessible. Thus a private method

cannot be overridden, because it is not

accessible outside its own class. If a method

defined in a subclass is private in its

superclass, the two methods are completely

unrelated.

15
Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All

rights reserved. 0-13-148952-6

NOTE

Like an instance method, a static method

can be inherited. However, a static method

cannot be overridden. If a static method

defined in the superclass is redefined in a

subclass, the method defined in the

superclass is hidden.

16
Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All

rights reserved. 0-13-148952-6

The Object Class

Every class in Java is descended from the

java.lang.Object class. If no inheritance is

specified when a class is defined, the

superclass of the class is Object.

 public class Circle {
 ...

}

Equivalent
public class Circle extends Object {

 ...

}

17
Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All

rights reserved. 0-13-148952-6

The toString() method in Object

The toString() method returns a string representation of the
object. The default implementation returns a string consisting
of a class name of which the object is an instance, the at sign
(@), and a number representing this object.

Cylinder myCylinder = new Cylinder(5.0, 2.0);

System.out.println(myCylinder.toString());

The code displays something like Cylinder@15037e5. This
message is not very helpful or informative. Usually you should
override the toString method so that it returns a digestible string
representation of the object.

18
Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All

rights reserved. 0-13-148952-6

Polymorphism, Dynamic Binding and Generic Programming
public class Test {

public static void main(String[] args) {

m(new GraduateStudent());

m(new Student());

m(new Person());

m(new Object());

}

public static void m(Object x) {

System.out.println(x.toString());

}

}

class GraduateStudent extends Student {

}

class Student extends Person {

public String toString() {

return "Student";

}

}

class Person extends Object {

public String toString() {

return "Person";

}

}

Method m takes a parameter

of the Object type. You can

invoke it with any object.

An object of a subtype can be used wherever its

supertype value is required. This feature is

known as polymorphism.

When the method m(Object x) is executed, the
argument x’s toString method is invoked. x
may be an instance of GraduateStudent,
Student, Person, or Object. Classes
GraduateStudent, Student, Person, and Object
have their own implementation of the toString
method. Which implementation is used will be
determined dynamically by the Java Virtual
Machine at runtime. This capability is known
as dynamic binding.

19
Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All

rights reserved. 0-13-148952-6

Dynamic Binding

Dynamic binding works as follows: Suppose an object o is an
instance of classes C

1
, C

2
, ..., C

n-1
, and C

n
, where C

1
is a subclass

of C
2
, C

2
is a subclass of C

3
, ..., and C

n-1
is a subclass of C

n
. That

is, C
n

is the most general class, and C
1

is the most specific class.
In Java, C

n
is the Object class. If o invokes a method p, the JVM

searches the implementation for the method p in C
1
, C

2
, ..., C

n-1

and C
n
, in this order, until it is found. Once an implementation is

found, the search stops and the first-found implementation is
invoked.

Cn Cn-1 C2 C1

Object

Since o is an instance of C1, o is also an

instance of C2, C3, …, Cn-1, and Cn

20
Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All

rights reserved. 0-13-148952-6

Method Matching vs. Binding

Matching a method signature and binding a method
implementation are two issues. The compiler finds a
matching method according to parameter type, number
of parameters, and order of the parameters at
compilation time. A method may be implemented in
several subclasses. The Java Virtual Machine
dynamically binds the implementation of the method at
runtime. See Review Questions 8.7 and 8.8.

21
Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All

rights reserved. 0-13-148952-6

Generic Programming
public class Test {

public static void main(String[] args) {

m(new GraduateStudent());

m(new Student());

m(new Person());

m(new Object());

}

public static void m(Object x) {

System.out.println(x.toString());

}

}

class GraduateStudent extends Student {

}

class Student extends Person {

public String toString() {

return "Student";

}

}

class Person extends Object {

public String toString() {

return "Person";

}

}

Polymorphism allows methods to be used
generically for a wide range of object
arguments. This is known as generic
programming. If a method’s parameter
type is a superclass (e.g., Object), you
may pass an object to this method of any
of the parameter’s subclasses (e.g.,
Student or String). When an object (e.g., a
Student object or a String object) is used
in the method, the particular
implementation of the method of the
object that is invoked (e.g., toString) is
determined dynamically.

22
Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All

rights reserved. 0-13-148952-6

Casting Objects
You have already used the casting operator to convert variables of

one primitive type to another. Casting can also be used to convert an

object of one class type to another within an inheritance hierarchy. In

the preceding section, the statement

m(new Student());

assigns the object new Student() to a parameter of the Object type.

This statement is equivalent to:

Object o = new Student(); // Implicit casting

m(o);

The statement Object o = new Student(), known as

implicit casting, is legal because an instance of

Student is automatically an instance of Object.

23
Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All

rights reserved. 0-13-148952-6

Why Casting Is Necessary?
Suppose you want to assign the object reference o to a variable of the
Student type using the following statement:

Student b = o;

A compilation error would occur. Why does the statement Object o =
new Student() work and the statement Student b = o doesn’t? This is
because a Student object is always an instance of Object, but an
Object is not necessarily an instance of Student. Even though you can
see that o is really a Student object, the compiler is not so clever to
know it. To tell the compiler that o is a Student object, use an explicit
casting. The syntax is similar to the one used for casting among
primitive data types. Enclose the target object type in parentheses and
place it before the object to be cast, as follows:

Student b = (Student)o; // Explicit casting

24
Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All

rights reserved. 0-13-148952-6

Casting from

Superclass to Subclass

Explicit casting must be used when casting an

object from a superclass to a subclass. This type

of casting may not always succeed.

Cylinder myCylinder = (Cylinder)myCircle;

Apple x = (Apple)fruit;

Orange x = (Orange)fruit;

25
Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All

rights reserved. 0-13-148952-6

The instanceof Operator

Use the instanceof operator to test whether an
object is an instance of a class:

Circle myCircle = new Circle();

if (myCircle instanceof Cylinder) {

Cylinder myCylinder = (Cylinder)myCircle;
...

}

26
Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All

rights reserved. 0-13-148952-6

TIP

To help understand casting, you may also
consider the analogy of fruit, apple, and
orange with the Fruit class as the superclass
for Apple and Orange. An apple is a fruit, so
you can always safely assign an instance of
Apple to a variable for Fruit. However, a
fruit is not necessarily an apple, so you have
to use explicit casting to assign an instance
of Fruit to a variable of Apple.

27
Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All

rights reserved. 0-13-148952-6

Example 8.1

Demonstrating Polymorphism

and Casting

This example creates two geometric objects: a circle,

and a cylinder, invokes the displayGeometricObject

method to display the objects. The

displayGeometricObject displays the area and

perimeter if the object is a circle, and displays area

and volume if the object is a cylinder.

TestPolymorphismCasting Run

28
Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All

rights reserved. 0-13-148952-6

Hiding Fields and Static Methods (Optional)

You can override an instance method, but you cannot

override a field (instance or static) or a static method.

If you declare a field or a static method in a subclass

with the same name as one in the superclass, the one

in the superclass is hidden, but it still exists. The two

fields or static methods are independent. You can

reference the hidden field or static method using the

super keyword in the subclass. The hidden field or

method can also be accessed via a reference variable

of the superclass’s type.

29
Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All

rights reserved. 0-13-148952-6

Hiding Fields and Static Methods, cont.

When invoking an instance method from a reference

variable, the actual class of the object referenced by

the variable decides which implementation of the

method is used at runtime. When accessing a field or

a static method, the declared type of the reference

variable decides which method is used at compilation

time.

See the example in the book.

30
Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All

rights reserved. 0-13-148952-6

The protected Modifier

� The protected modifier can be applied on data

and methods in a class. A protected data or a
protected method in a public class can be accessed
by any class in the same package or its subclasses,
even if the subclasses are in a different package.

�private, default, protected, public

private, none (if no modifier is used), protected, public

Visibility increases

31
Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All

rights reserved. 0-13-148952-6

Accessibility Summary

Modifier

on members

in a class

Accessed

from the

same class

Accessed

from the

same package

Accessed

from a

subclass

Accessed

from a different

package

public

protected -

default - -

private - - -

32
Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All

rights reserved. 0-13-148952-6

Visibility Modifiers

public class C1 {

 public int x;

 protected int y;

 int z;

 private int u;

 protected void m() {

 }
}

public class C2 {

 C1 o = new C1();

 can access o.x;

 can access o.y;

 can access o.z;

 cannot access o.u;

 can invoke o.m();
}

public class C3

 extends C1 {

 can access x;

 can access y;

 can access z;

 cannot access u;

 can invoke m();
}

package p1;

public class C4

 extends C1 {

 can access x;

 can access y;

 cannot access z;

 cannot access u;

 can invoke m();
}

package p2;

public class C5 {

 C1 o = new C1();

 can access o.x;

 cannot access o.y;

 cannot access o.z;

 cannot access o.u;

 cannot invoke o.m();

}

33
Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All

rights reserved. 0-13-148952-6

A Subclass Cannot Weaken the Accessibility

A subclass may override a protected

method in its superclass and change its

visibility to public. However, a subclass

cannot weaken the accessibility of a

method defined in the superclass. For

example, if a method is defined as public

in the superclass, it must be defined as

public in the subclass.

34
Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All

rights reserved. 0-13-148952-6

NOTE

The modifiers are used on classes and

class members (data and methods), except

that the final modifier can also be used on

local variables in a method. A final local

variable is a constant inside a method.

35
Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All

rights reserved. 0-13-148952-6

The final Modifier

� The final class cannot be extended:

final class Math {

...

}

� The final variable is a constant:

final static double PI = 3.14159;

� The final method cannot be
overridden by its subclasses.

36
Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All

rights reserved. 0-13-148952-6

The equals() and hashCode()

Methods in the Object Class

�The equals() method compares the

contents of two objects.

�The hashCode() method returns the hash code

of the object. Hash code is an integer, which

can be used to store the object in a hash set so

that it can be located quickly.

Optional

37
Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All

rights reserved. 0-13-148952-6

The equals Method

The equals() method compares the

contents of two objects. The default implementation of the

equals method in the Object class is as follows:

public boolean equals(Object obj) {

return (this == obj);
}

For example, the

equals method is

overridden in

the Circle

class.

public boolean equals(Object o) {

if (o instanceof Circle) {

return radius == ((Circle)o).radius;

}

else

return false;

}

38
Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All

rights reserved. 0-13-148952-6

NOTE
The == comparison operator is used for

comparing two primitive data type values or for

determining whether two objects have the same

references. The equals method is intended to

test whether two objects have the same

contents, provided that the method is modified

in the defining class of the objects. The ==

operator is stronger than the equals method, in

that the == operator checks whether the two

reference variables refer to the same object.

39
Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All

rights reserved. 0-13-148952-6

The hashCode() method

Invoking hashCode() on an object returns the hash code of

the object. Hash code is an integer, which can be used to

store the object in a hash set so that it can be located

quickly. Hash sets will be introduced in Chapter 18, “Java

Collections Framework.” The hashCode implemented in

the Object class returns the internal memory address of the

object in hexadecimal. Your class should override the

hashCode method whenever the equals method is

overridden. By contract, if two objects are equal, their hash

codes must be same.

40
Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All

rights reserved. 0-13-148952-6

The finalize, clone, and

getClass Methods

�The finalize method is invoked by the garbage collector on

an object when the object becomes garbage.

�The clone() method copies an object.

�The getClass() method returns an instance of the

java.lang.Class class, which contains the information about

the class for the object. Before an object is created, its

defining class is loaded and the JVM automatically creates an

instance of java.lang.Class for the class. From this instance,

you can discover the information about the class at runtime.

Optional

41
Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All

rights reserved. 0-13-148952-6

Initialization Block
Initialization blocks can be used to initialize objects along with the constructors. An

initialization block is a block of statements enclosed inside a pair of braces. An

initialization block appears within the class declaration, but not inside methods or

constructors. It is executed as if it were placed at the beginning of every constructor

in the class.

public class Book {

 private static int numOfObjects;

 private String title;

 private int id;

 public Book(String title) {

 numOfObjects++;

 this.title = title;

 }

 public Book(int id) {

 numOfObjects++;

 this.id = id;

 }
}

public class Book {

 private static int numOfObjects;

 private String title

 private int id;

 public Book(String title) {

 this.title = title;

 }

 public Book(int id) {

 this.id = id;

 }

 {

 numOfObjects++;

 }

}

Equivalent

42
Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All

rights reserved. 0-13-148952-6

Initialization Block

public class Book {

{

numOfObjects++;

}

}

43
Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All

rights reserved. 0-13-148952-6

Static Initialization Block

A static initialization block is much like a

nonstatic initialization block except that it is

declared static, can only refer to static members of

the class, and is invoked when the class is loaded.

The JVM loads a class when it is needed. A

superclass is loaded before its subclasses.

44
Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All

rights reserved. 0-13-148952-6

Static Initialization Block
class A extends B {

static {

System.out.println("A's static initialization block " +

"is invoked");

}

}

class B {

static {

System.out.println("B's static initialization block " +

“is invoked");

}

}

