
1Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Chapter 6 Objects and Classes

Prerequisites for Part II

Chapter 6 Objects and Classes

Chapter 7 Strings

Chapter 8 Inheritance and Polymorphism

Chapter 5 Arrays

Chapter 9 Abstract Classes and Interfaces

Chapter 10 Object-Oriented Modeling

Chapter 11 Getting Started with GUI Programming

Chapter 12 Event-Driven Programming

Chapter 15 Exceptions and Assertions

Chapter 16 Simple Input and Output

You can cover Exceptions and I/O after Chapter 8

You can cover GUI after Chapter 8

2Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Objectives
To understand objects and classes and use classes to model objects (§6.2).
To learn how to declare a class and how to create an object of a class (§6.3).
To understand the roles of constructors and use constructors to create objects
(§6.3).
To use UML graphical notations to describe classes and objects (§6.3).
To distinguish between object reference variables and primitive data type variables
(§6.4).
To use classes in the Java library (§6.5).
To declare private data fields with appropriate get and set methods to make class
easy to maintain (§6.6-6.8).
To develop methods with object arguments (§6.9).
To understand the difference between instance and static variables and methods
(§6.10).
To determine the scope of variables in the context of a class (§6.11).
To use the keyword this as the reference to the current object that invokes the
instance method (§6.12).
To store and process objects in arrays (§6.13).
To apply class abstraction to develop software (§6.14).
To declare inner classes (§6.17).

3Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

OO Programming Concepts
Object-oriented programming (OOP) involves
programming using objects. An object represents
an entity in the real world that can be distinctly
identified. For example, a student, a desk, a circle,
a button, and even a loan can all be viewed as
objects. An object has a unique identity, state, and
behaviors. The state of an object consists of a set of
data fields (also known as properties) with their
current values. The behavior of an object is defined
by a set of methods.

4Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Objects

data field 1

method n

data field m

method 1

(A) A generic object

...

...

State
(Properties)

Behavior

radius = 5

findArea()

Data field, State
Properties

Method,
Behavior

(B) An example of circle object

An object has both a state and behavior. The state
defines the object, and the behavior defines what the
object does.

5Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Classes

Classes are constructs that define objects of the
same type. A Java class uses variables to define
data fields and methods to define behaviors.
Additionally, a class provides a special type of
methods, known as constructors, which are invoked
to construct objects from the class.

6Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Classes
 class Circle {

/** The radius of this circle */
double radius = 1.0;

/** Construct a circle object */
Circle() {
}

/** Construct a circle object */
Circle(double newRadius) {
 radius = newRadius;
}

/** Return the area of this circle */
double findArea() {
 return radius * radius * 3.14159;
}

 }

Data field

Method

Constructors

7Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Constructors

Circle() {
}

Circle(double newRadius) {
radius = newRadius;

}

Constructors are a special
kind of methods that are
invoked to construct objects.

8Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Constructors, cont.
A constructor with no parameters is referred to as a
no-arg constructor.

· Constructors must have the same name as the
class itself.

· Constructors do not have a return type—not
even void.

· Constructors are invoked using the new
operator when an object is created. Constructors
play the role of initializing objects.

9Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Creating Objects Using
Constructors

new ClassName();

Example:
new Circle();

new Circle(5.0);

10Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Default Constructor
A class may be declared without constructors. In
this case, a no-arg constructor with an empty body
is implicitly declared in the class. This constructor,
called a default constructor, is provided
automatically only if no constructors are explicitly
declared in the class.

11Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Constructing Objects, cont.

circle1: Circle

radius = 2

new Circle()

circlen: Circle

radius = 5

new Circle()

...

UML Graphical notation for classes

UML Graphical notation
for objects

Circle

radius: double

findArea(): double

UML Graphical notation for fields

UML Graphical notation for methods

12Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Declaring Object Reference Variables

To reference an object, assign the object to a reference
variable.

To declare a reference variable, use the syntax:

ClassName objectRefVar;

Example:
Circle myCircle;

13Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Declaring/Creating Objects
in a Single Step

ClassName objectRefVar = new ClassName();

Example:
Circle myCircle = new Circle();

Create an objectAssign object reference

14Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Accessing Objects
Referencing the object’s data:
objectRefVar.data

e.g., myCircle.radius

Invoking the object’s method:
objectRefVar.methodName(arguments)

e.g., myCircle.findArea()

15Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Example 6.1 Using Objects

Objective: Demonstrate creating objects,
accessing data, and using methods.

TestSimpleCircle

16Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Caution
Recall that you use

Math.methodName(arguments) (e.g., Math.pow(3, 2.5))

to invoke a method in the Math class. Can you invoke findArea() using
SimpleCircle.findArea()? The answer is no. All the methods used
before this chapter are static methods, which are defined using the static
keyword. However, findArea() is non-static. It must be invoked from an
object using

objectRefVar.methodName(arguments) (e.g., myCircle.findArea()).

More explanations will be given in Section 6.7, “Static Variables,
Constants, and Methods.”

17Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

The null Value
If a variable of a reference type does not
reference any object, the variable holds a
special literal value, null.

18Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Default Value for a Data Field
The default value of a data field is null for a
reference type, 0 for a numeric type, false for
a boolean type, and '\u0000' for a char type.
However, Java assigns no default value to a
local variable inside a method.

19Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Example
public class Student {

String name; // name has default value null
int age; // age has default value 0

boolean isScienceMajor; // isScienceMajor has default value false

char gender; // c has default value '\u0000'

public static void main(String[] args) {

Student student = new Student();

System.out.println("name? " + student.name);

System.out.println("age? " + student.age);
System.out.println("isScienceMajor? " + student.isScienceMajor);

System.out.println("gender? " + student.gender);

}

}

20Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Example
public class Test {
public static void main(String[] args) {
int x; // x has no default value
String y; // y has no default value
System.out.println("x is " + x);
System.out.println("y is " + y);

}
}

Compilation error: variables not
initialized

21Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Differences between Variables of
Primitive Data Types and Object Types

1 Primitive type int i = 1 i

Object type Circle c c reference

Created using new Circle()

c: Circle

radius = 1

22Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Copying Variables of Primitive
Data Types and Object Types

1

c1: Circle

radius = 5

Primitive type assignment
i = j

Before:

i

2j

2

After:

i

2j

Object type assignment
c1 = c2

Before:

c1

c2

After:

c1

c2

c2: Circle

radius = 9

23Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Garbage Collection

As shown in the previous figure, after the
assignment statement c1 = c2, c1 points to
the same object referenced by c2. The
object previously referenced by c1 is no
longer useful. This object is known as
garbage. Garbage is automatically
collected by JVM.

24Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Garbage Collection, cont

TIP: If you know that an object is no
longer needed, you can explicitly assign
null to a reference variable for the
object. The Java VM will automatically
collect the space if the object is not
referenced by any variable.

25Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Using Classes from the Java Library

Example 6.1 declared the SimpleCircle class
and created objects from the class. Often you
will use the classes in the Java library to
develop programs. You learned to obtain the
current time using System.currentTimeMillis()
in Example 2.5, “Displaying Current Time.”
You used the division and remainder operators
to extract current second, minute, and hour.

26Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

The Date Class
Java provides a system-independent encapsulation of date
and time in the java.util.Date class. You can use the Date
class to create an instance for the current date and time and
use its toString method to return the date and time as a string.
For example, the following code

java.util.Date date = new java.util.Date();
System.out.println(date.toString());

displays a string like Sun Mar 09 13:50:19 EST
2003.

27Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Example of Using Classes from
the Java Library

Objective: Demonstrate using classes from the
Java library. Use the JFrame class in the
javax.swing package to create two frames; use
the methods in the JFrame class to set the title,
size and location of the frames and to display
the frames.

TestFrame

28Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Visibility Modifiers and
Accessor/Mutator Methods

By default, the class, variable, or method can be
accessed by any class in the same package.

public
The class, data, or method is visible to any class in any
package.

private
The data or methods can be accessed only by the declaring
class.

The get and set methods are used to read and modify private
properties.

29Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

public class C1 {
 public int x;
 int y;
 private int z;

 public void m1() {
 }
 void m2() {
 }
 private void m3() {
 }
}

public class C2 {
 C1 o = new C1();
 can access o.x;
 can access o.y;
 cannot access o.z;

 can invoke o.m1();
 can invoke o.m2();
 cannot invoke o.m3();
}

package p1; package p2;

public class C3 {
 C1 o = new C1();
 can access o.x;
 cannot access o.y;
 cannot access o.z;

 can invoke o.m1();
 cannot invoke o.m2();
 cannot invoke o.m3();
}

The private modifier restricts access to within a class, the default
modifier restricts access to within a package, and the public
modifier enables unrestricted access.

30Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Why Data Fields Should Be
private?

To protect data.

To make class easy to maintain.

31Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Example of
Data Field Encapsulation

Circle

In this example, private data are used for the radius
and the accessor methods getRadius and setRadius
are provided for the clients to retrieve and modify the
radius.

TestCircle

32Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Immutable Objects and Classes
If the contents of an object cannot be changed once the object
is created, the object is called an immutable object and its class
is called an immutable class. If you delete the set method in
the Circle class in the preceding example, the class would be
immutable because radius is private and cannot be changed
without a set method.

A class with all private data fields and without mutators is not
necessary to be immutable. For example, the following class
Student has all private data fields and no mutators, but it is
mutable.

33Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Example
public class Student {
private int id;
private BirthDate birthDate;

public Student(int ssn,
int year, int month, int day) {

id = ssn;
birthDate = new BirthDate(year, month, day);

}

public int getId() {
return id;

}

public BirthDate getBirthDate() {
return birthDate;

}
}

public class BirthDate {
private int year;
private int month;
private int day;

public BirthDate(int newYear,
int newMonth, int newDay) {

year = newYear;
month = newMonth;
day = newDay;

}

public void setYear(int newYear) {
year = newYear;

}
}

public class Test {
public static void main(String[] args) {

Student student = new Student(111223333, 1970, 5, 3);
BirthDate date = student.getBirthDate();
date.setYear(2010); // Now the student birth year is changed!

}
}

34Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

What Class is Immutable?

For a class to be immutable, it must mark all data fields private
and provide no mutator methods and no accessor methods that
would return a reference to a mutable data field object.

35Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Passing Objects to Methods

Passing by value for primitive type value
(the value is passed to the parameter)

Passing by value for reference type value
(the value is the reference to the object)

TestPassObject

36Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Passing Objects to Methods, cont.

Space required for the
main method
 int n: 5
 myCircle:

Stack

Space required for the
printAreas method
 int times: 5
 Circle c:

reference
A circle
object

Heap
reference

Pass by value
(here the value is
the reference for
the object)

Pass by value (here
the value is 5)

37Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Instance
Variables, and Methods

Instance variables belong to a specific instance.

Instance methods are invoked by an instance of
the class.

38Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Static Variables, Constants,
and Methods

Static variables are shared by all the instances of the
class.

Static methods are not tied to a specific object.

Static constants are final variables shared by all the
instances of the class.

39Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Static Variables, Constants,
and Methods, cont.

To declare static variables, constants, and methods,
use the static modifier.

40Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Static Variables, Constants,
and Methods, cont.

CircleWithStaticVariableAndMethod

-radius: double
-numberOfObjects: int

+getRadius(): double
+setRadius(radius: double): void
+getNumberOfObjects(): int
+findArea(): double

1 radius

circle1

-radius = 1
-numberOfObjects = 2

instantiate

instantiate

Memory

2

5 radius

numberOfObjects

UML Notation:
 +: public variables or methods
 -: private variables or methods
 underline: static variables or methods

circle2

-radius = 5
-numberOfObjects = 2

41Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Example of
Using Instance and Class Variables

and Method

Objective: Demonstrate the roles of
instance and class variables and their
uses. This example adds a class variable
numOfObjects to track the number of
Circle objects created.

TestCircleWithStaticVariableAndMethod

CircleWithStaticVariableAndMethod

42Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Scope of Variables

The scope of instance and static variables is the
entire class. They can be declared anywhere inside
a class.

The scope of a local variable starts from its
declaration and continues to the end of the block
that contains the variable. A local variable must be
initialized explicitly before it can be used.

43Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

The this Keyword

Use this to refer to the object that invokes
the instance method.

Use this to refer to an instance data field.

Use this to invoke an overloaded
constructor of the same class.

44Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Serving as Proxy to the Calling Object

class Foo {
 int i = 5;
 static double k = 0;

 void setI(int i) {
 this.i = i;
 }

 static void setK(double k) {
 Foo.k = k;
 }
}

Suppose that f1 and f2 are two objects of Foo

Invoking f1.setI(10) is to execute
 f1.i = 10, where this is replaced by f1

Invoking f2.setI(45) is to execute
 f2.i = 45, where this is replaced by f2

45Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Calling Overloaded Constructor

public class Circle {
 private double radius;

 public Circle(double radius) {
 this.radius = radius;
 }

 public Circle() {
 this(1.0);
 }

 public double findArea() {
 return this.radius * this.radius * Math.PI;
 }
} Every instance variable belongs to an instance represented by this,

which is normally omitted

this must be explicitly used to reference the data
field radius of the object being constructed

this is used to invoke another constructor

46Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Array of Objects
Circle[] circleArray = new Circle[10];

An array of objects is actually an array of
reference variables. So invoking
circleArray[1].findArea() involves two
levels of referencing as shown in the next
figure. circleArray references to the entire
array. circleArray[1] references to a
Circle object.

47Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Array of Objects, cont.

reference Circle object 0circleArray[0]

…

circleArray
circleArray[1]

circleArray[9] Circle object 9

Circle object 1

Circle[] circleArray = new Circle[10];

48Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Array of Objects, cont.
Example 6.2: Summarizing the areas
of the circles

TotalArea

49Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Class Abstraction and Encapsulation
Class abstraction means to separate class implementation
from the use of the class. The creator of the class provides
a description of the class and let the user know how the
class can be used. The user of the class does not need to
know how the class is implemented. The detail of
implementation is encapsulated and hidden from the user.

Class Contract
(Signatures of

public methods and
public constants)

Class

Class implementation
is like a black box
hidden from the clients

Clients use the

class through the
contract of the class

50Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Example 6.3 The Loan Class

TestLoanClassLoan

 Loan

-annualInterestRate: double
-numberOfYears: int
-loanAmount: double
-loanDate: Date

+Loan()
+Loan(annualInterestRate: double,

numberOfYears: int,
loanAmount: double)

+getAnnualInterestRate(): double
+getNumberOfYears(): int
+getLoanAmount(): double
+getLoanDate(): Date
+setAnnualInterestRate(
 annualInterestRate: double): void
 +setNumberOfYears(
 numberOfYears: int): void
 +setLoanAmount(
 loanAmount: double): void
 +monthlyPayment(): double
 +totalPayment(): double

The annual interest rate of the loan (default: 2.5).
The number of years for the loan (default: 1)
The loan amount (default: 1000)..
The date this loan was created.

Constructs a default loan object.
Constructs a loan with specified interest rate, years, and
loan amount.

Returns the annual interest rate of this loan.
Returns the number of the years of this loan.
Returns the amount of this loan.
Returns the date of the creation of this loan.
Sets a new annual interest rate to this loan.

Sets a new number of years to this loan.

Sets a new amount to this loan.

Returns the monthly payment of this loan.
Returns the total payment of this loan.

51Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Example 6.4 The
StackOfIntegers Class

TestStackOfIntegers

StackOfIntegers

-elements: int[]
-size: int

+StackOfIntegers()
+StackOfIntegers(capacity: int)
+empty(): boolean
+peek(): int
+push(element: int): int
+pop(): int
+getSize(): int

.
.
.

.
.
.

[0]
[1]

size - 1

capacity - 1

52Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Inner Classes
Inner class: A class is a member of another class.

Advantages: In some applications, you can use an
inner class to make programs simple.

An inner class can reference the data and
methods defined in the outer class in which it
nests, so you do not need to pass the reference
of the outer class to the constructor of the inner
class.

ShowInnerClass

Optional

53Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Inner Classes (cont.)
Inner classes can make programs simple
and concise.

An inner class supports the work of its
containing outer class and is compiled
into a class named
OutClassName$InnerClassName.class.
For example, the inner class InnerClass in
ShowInnerClass is compiled into
ShowInnerClass$InnerClass.class.

54Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Inner Classes (cont.)
An inner class can be declared public,
protected, or private subject to the same
visibility rules applied to a member of the
class.

An inner class can be declared static. A
static inner class can be accessed using
the outer class name. A static inner class
cannot access nonstatic members of the
outer class

