
1Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Chapter 5 Arrays

Chapter 1 Introduction to Computers, Programs,
and Java

Chapter 2 Primitive Data Types and Operations

Chapter 3 Control Statements

Chapter 5 Arrays

Chapter 4 Methods

Basic computer skills such as using Windows,
Internet Explorer, and Microsoft Word

Prerequisites for Part I

2Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Objectives
To describe why an array is necessary in programming (§5.1).
To learn the steps involved in using arrays: declaring array
reference variables and creating arrays (§5.2).
To initialize the values in an array (§5.2).
To simplify programming using JDK 1.5 enhanced for loop (§5.2).
To copy contents from one array to another (§5.3).
To develop and invoke methods with array arguments and ruturn
type (§5.4-5.5).
To sort an array using the selection sort algorithm (§5.6).
To search elements using the linear or binary search algorithm
(§5.7).
To declare and create multidimensional arrays (§5.8).
To declare and create multidimensional arrays (§5.9 Optional).

3Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Introducing Arrays
Array is a data structure that represents a collection of the
same types of data.

5.6

4.5

3.3

13.2

4

34.33

34

45.45

99.993

11123

double[] myList = new double[10];

myList reference
myList[0]
myList[1]

myList[2]

myList[3]

myList[4]

myList[5]

myList[6]

myList[7]

myList[8]

myList[9]

Element value

Array reference
variable

Array element at
index 5

4Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Declaring Array Variables
datatype[] arrayRefVar;

Example:

double[] myList;

datatype arrayRefVar[]; // This style is
correct, but not preferred

Example:

double myList[];

5Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Creating Arrays
arrayRefVar = new datatype[arraySize];

Example:
myList = new double[10];

myList[0] references the first element in the array.
myList[9] references the last element in the array.

6Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Declaring and Creating
in One Step

datatype[] arrayRefVar = new
datatype[arraySize];

double[] myList = new double[10];

datatype arrayRefVar[] = new
datatype[arraySize];

double myList[] = new double[10];

7Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

The Length of an Array

Once an array is created, its size is fixed. It cannot be
changed. You can find its size using

arrayRefVar.length

For example,

myList.length returns 10

8Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Default Values
When an array is created, its elements are
assigned the default value of

0 for the numeric primitive data types,
'\u0000' for char types, and
false for boolean types.

9Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Indexed Variables
The array elements are accessed through the index. The
array indices are 0-based, i.e., it starts from 0 to
arrayRefVar.length-1. In the example in Figure 5.1,
myList holds ten double values and the indices are
from 0 to 9.

Each element in the array is represented using the
following syntax, known as an indexed variable:

arrayRefVar[index];

10Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Using Indexed Variables
After an array is created, an indexed variable can
be used in the same way as a regular variable.
For example, the following code adds the value
in myList[0] and myList[1] to myList[2].

myList[2] = myList[0] + myList[1];

11Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Array Initializers

Declaring, creating, initializing in one step:
double[] myList = {1.9, 2.9, 3.4, 3.5};

This shorthand syntax must be in one
statement.

12Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Declaring, creating, initializing
Using the Shorthand Notation

double[] myList = {1.9, 2.9, 3.4, 3.5};

This shorthand notation is equivalent to the
following statements:
double[] myList = new double[4];

myList[0] = 1.9;

myList[1] = 2.9;

myList[2] = 3.4;

myList[3] = 3.5;

13Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

CAUTION
Using the shorthand notation, you
have to declare, create, and initialize
the array all in one statement.
Splitting it would cause a syntax
error. For example, the following is
wrong:

double[] myList;

myList = {1.9, 2.9, 3.4, 3.5};

14Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Processing Arrays
See the examples in the text.

1. (Initializing arrays)

2. (Printing arrays)

3. (Summing all elements)

4. (Finding the largest element)

5. (Finding the smallest index of the largest
element)

15Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Enhanced for Loop

JDK 1.5 introduced a new for loop that enables you to traverse the complete array
sequentially without using an index variable. For example, the following code
displays all elements in the array myList:

for (double value: myList)
System.out.println(value);

In general, the syntax is

for (elementType value: arrayRefVar) {
// Process the value

}

You still have to use an index variable if you wish to traverse the array in a
different order or change the elements in the array.

JDK 1.5
Feature

16Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Example 5.1
Testing Arrays

Objective: The program receives 6 numbers from
the keyboard, finds the largest number and counts
the occurrence of the largest number entered from
the keyboard.
Suppose you entered 3, 5, 2, 5, 5, and 5, the
largest number is 5 and its occurrence count is 4.

TestArray

17Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Example 5.2
Assigning Grades

Objective: read student scores (int), get the best
score, and then assign grades based on the
following scheme:
– Grade is A if score is >= best–10;
– Grade is B if score is >= best–20;
– Grade is C if score is >= best–30;
– Grade is D if score is >= best–40;
– Grade is F otherwise.

AssignGrade

18Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Copying Arrays
Often, in a program, you need to duplicate an array or a part of an
array. In such cases you could attempt to use the assignment statement
(=), as follows:

list2 = list1;

Contents
of list1

list1

Contents
of list2

list2

Before the assignment
list2 = list1;

Contents
of list1

list1

Contents
of list2

list2

After the assignment
list2 = list1;

Garbage

19Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Copying Arrays
Using a loop:
int[] sourceArray = {2, 3, 1, 5, 10};
int[] targetArray = new
int[sourceArray.length];

for (int i = 0; i < sourceArrays.length; i++)
targetArray[i] = sourceArray[i];

20Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

The arraycopy Utility
arraycopy(sourceArray, src_pos,
targetArray, tar_pos, length);

Example:
System.arraycopy(sourceArray, 0,
targetArray, 0, sourceArray.length);

21Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Passing Arrays to Methods
public static void printArray(int[] array) {
for (int i = 0; i < array.length; i++) {
System.out.print(array[i] + " ");

}
}

Invoke the method

int[] list = {3, 1, 2, 6, 4, 2};
printArray(list);

Invoke the method
printArray(new int[]{3, 1, 2, 6, 4, 2});

Anonymous array

22Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Anonymous Array
The statement

printArray(new int[]{3, 1, 2, 6, 4, 2});

creates an array using the following syntax:
new dataType[]{literal0, literal1, ..., literalk};

There is no explicit reference variable for the array.
Such array is called an anonymous array.

23Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Pass By Value
Java uses pass by value to pass parameters to a method. There
are important differences between passing a value of variables
of primitive data types and passing arrays.

For a parameter of a primitive type value, the actual value is
passed. Changing the value of the local parameter inside the
method does not affect the value of the variable outside the
method.

For a parameter of an array type, the value of the parameter
contains a reference to an array; this reference is passed to the
method. Any changes to the array that occur inside the method
body will affect the original array that was passed as the
argument.

24Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

public class Test {
public static void main(String[] args) {

int x = 1; // x represents an int value
int[] y = new int[10]; // y represents an array of int values

m(x, y); // Invoke m with arguments x and y

System.out.println("x is " + x);

System.out.println("y[0] is " + y[0]);
}

public static void m(int number, int[] numbers) {
number = 1001; // Assign a new value to number
numbers[0] = 5555; // Assign a new value to numbers[0]

}
}

Simple Example

25Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Call Stack

When invoking m(x, y), the values of x and y are
passed to number and numbers. Since y contains the
reference value to the array, numbers now contains
the same reference value to the same array.

Space required for the
main method
 int[] y:
 int x: 1

Stack

Space required for
method m
int[] numbers:
int number: 1

reference

Array of
ten int
values is
stored here

The arrays are
stored in a
heap.

Heap

reference

26Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Heap

Space required for the
main method
 int[] y:
 int x: 1

Stack

Space required for
xMethod
int[] numbers:
int number: 1

reference

Array of
ten int
values are
stored here

The arrays are
stored in a
heap.

Heap

reference

The JVM stores the array in an area of
memory, called heap, which is used for
dynamic memory allocation where blocks of
memory are allocated and freed in an arbitrary
order.

27Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Example 5.3
Passing Arrays as Arguments

Objective: Demonstrate differences of
passing primitive data type variables
and array variables.

TestPassArray

28Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Example 5.3, cont.

Invoke swap(int n1, int n2).
The primitive type values in
a[0] and a[1] are passed to the
swap method.

Space required for the
main method
 int[] a

Stack

Space required for the
swap method

n2: 2
n1: 1

reference a[1]: 2
a[0]: 1

The arrays are
stored in a
heap.

Invoke swapFirstTwoInArray(int[] array).
The reference value in a is passed to the
swapFirstTwoInArray method.

Heap

Space required for the
main method
 int[] a

Stack
Space required for the
swapFirstTwoInArray
method
 int[] array

reference

reference

29Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Returning an Array from a Method
public static int[] reverse(int[] list) {

int[] result = new int[list.length];

for (int i = 0, j = result.length - 1;
i < list.length; i++, j--) {

result[j] = list[i];
}

return result;
}

int[] list1 = new int[]{1, 2, 3, 4, 5, 6};
int[] list2 = reverse(list1);

30Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Example 5.4
Counting Occurrence of Each Letter

Generate 100 lowercase
letters randomly and assign
to an array of characters.
Count the occurrence of each
letter in the array.

CountLettersInArray

A method may return an array, as shown in the following
example.

 (A) Executing
createArray in Line 6

Space required for the
main method

char[] chars: ref

Heap

Array of 100
characters

Space required for the
createArray method

char[] chars: ref

(B) After exiting
createArray in Line 6

Space required for the
main method

char[] chars: ref

Heap

Array of 100
characters

Stack Stack

31Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

2 9 5 4 8 1 6

swap

Select 9 (the largest) and swap it
with 6 (the last) in the list

2 6 5 4 8 1 9

swap

The number 9 now is in the
correct position and thus no
longer need to be considered.

2 6 5 4 1 8 9

swap

2 1 5 4 6 8 9

swap

Select 8 (the largest) and swap it
with 1 (the last) in the remaining
list

The number 8 now is in the
correct position and thus no
longer need to be considered.

Select 6 (the largest) and swap it
with 1 (the last) in the remaining
list

The number 6 now is in the
correct position and thus no
longer need to be considered.

2 1 4 5 6 8 9

4 is the largest and last in the list.
No swap is necessary

2 1 4 5 6 8 9

swap

The number 4 now is in the
correct position and thus no
longer need to be considered.

1 2 4 5 6 8 9

swap

Select 2 (the largest) and swap it
with 1 (the last) in the remaining
list

The number 2 now is in the
correct position and thus no
longer need to be considered.

Since there is only one number in
the remaining list, sort is
completed

Select 5 (the largest) and swap it
with 4 (the last) in the remaining
list

The number 5 now is in the
correct position and thus no
longer need to be considered.

Selection sort finds the
largest number in the
list and places it last. It
then finds the largest
number remaining and
places it next to last,
and so on until the list
contains only a single
number. Figure 5.17
shows how to sort the
list {2, 9, 5, 4, 8, 1, 6}
using selection sort.

Selection Sort

32Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

From Idea to Solution
for (int i = list.length - 1; i >= 1; i--) {

select the largest element in list[0..i];
swap the largest with list[i], if necessary;
// list[i] is in place. The next iteration apply on list[0..i-1]

}

33Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

From Idea to Solution
for (int i = list.length - 1; i >= 1; i--) {
select the largest element in list[0..i];
swap the largest with list[i], if necessary;
// list[i] is in place. The next iteration apply on list[0..i-1]

}

// Find the maximum in the list[0..i]
double currentMax = list[0];
int currentMaxIndex = 0;

for (int j = 1; j <= i; j++) {
if (currentMax < list[j]) {
currentMax = list[j];
currentMaxIndex = j;

}
}

34Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

From Idea to Solution
for (int i = list.length - 1; i >= 1; i--) {
select the largest element in list[0..i];
swap the largest with list[i], if necessary;
// list[i] is in place. The next iteration apply on list[0..i-1]

}

// Swap list[i] with list[currentMaxIndex] if necessary;
if (currentMaxIndex != i) {
list[currentMaxIndex] = list[i];
list[i] = currentMax;

}

35Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Wrap it in a Method
/** The method for sorting the numbers */
public static void selectionSort(double[] list) {
for (int i = list.length - 1; i >= 1; i--) {

// Find the maximum in the list[0..i]
double currentMax = list[0];
int currentMaxIndex = 0;

for (int j = 1; j <= i; j++) {
if (currentMax < list[j]) {
currentMax = list[j];
currentMaxIndex = j;

}
}

// Swap list[i] with list[currentMaxIndex] if necessary;
if (currentMaxIndex != i) {

list[currentMaxIndex] = list[i];
list[i] = currentMax;

}
}

}

Invoke it

selectionSort(yourList)

36Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

The Arrays.sort Method
Since sorting is frequently used in programming, Java provides several
overloaded sort methods for sorting an array of int, double, char, short,
long, and float in the java.util.Arrays class. For example, the following
code sorts an array of numbers and an array of characters.

double[] numbers = {5.0, 4.4, 1.9, 2.9, 3.4, 3.5};
java.util.Arrays.sort(numbers);

char[] chars = {'a', 'A', '4', 'F', 'D', 'P'};
java.util.Arrays.sort(chars);

37Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Exercise 5.14 Bubble Sort
int[] myList = {2, 9, 5, 4, 8, 1, 6}; // Unsorted

The bubble-sort algorithm makes
several iterations through the array. On
each iteration, successive neighboring
pairs are compared. If a pair is in
decreasing order, its values are
swapped; otherwise, the values remain
unchanged. The technique is called a
bubble sort or sinking sort because the
smaller values gradually "bubble" their
way to the top and the larger values sink
to the bottom.

Iteration 1: 2, 5, 4, 8, 1, 6, 9
Iteration 2: 2, 4, 5, 1, 6, 8, 9
Iteration 3: 2, 4, 1, 5, 6, 8, 9
Iteration 4: 2, 1, 4, 5, 6, 8, 9
Iteration 5: 1, 2, 4, 5, 6, 8, 9
Iteration 6: 1, 2, 4, 5, 6, 8, 9

Optional

38Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Exercise 5.15 Insertion Sort
int[] myList = {2, 9, 5, 4, 8, 1, 6}; // Unsorted

The insertion sort algorithm
sorts a list of values by
repeatedly inserting an
unsorted element into a sorted
sublist until the whole list is
sorted.

Iteration 1: 2, 9, 5, 4, 8, 1, 6
Iteration 2: 2, 5, 9, 4, 8, 1, 6
Iteration 3: 2, 4, 5, 9, 8, 1, 6
Iteration 4: 2, 4, 5, 8, 9, 1, 6
Iteration 5: 1, 2, 4, 5, 8, 9, 6
Iteration 6: 1, 2, 4, 5, 6, 8, 9

Optional

39Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Searching Arrays
Searching is the process of looking for a
specific element in an array; for example,
discovering whether a certain score is included
in a list of scores. Searching, like sorting, is a
common task in computer programming. There
are many algorithms and data structures
devoted to searching. In this section, two
commonly used approaches are discussed,
linear search and binary search.

40Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Linear Search
The linear search approach compares the key
element, key, sequentially with each element in
the array list. The method continues to do so
until the key matches an element in the list or
the list is exhausted without a match being
found. If a match is made, the linear search
returns the index of the element in the array
that matches the key. If no match is found, the
search returns -1.

41Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

From Idea to Solution
/** The method for finding a key in the list */
public static int linearSearch(int[] list, int key) {

for (int i = 0; i < list.length; i++)
if (key == list[i])

return i;
return -1;

}

int[] list = {1, 4, 4, 2, 5, -3, 6, 2};
int i = linearSearch(list, 4); // returns 1
int j = linearSearch(list, -4); // returns -1
int k = linearSearch(list, -3); // returns 5

Trace the method

42Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Binary Search
For binary search to work, the elements in the
array must already be ordered. Without loss of
generality, assume that the array is in
ascending order.
e.g., 2 4 7 10 11 45 50 59 60 66 69 70 79
The binary search first compares the key with
the element in the middle of the array.
Consider the following three cases:

43Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Binary Search, cont.
• If the key is less than the middle element,
you only need to search the key in the first half
of the array.
· If the key is equal to the middle element, the
search ends with a match.
· If the key is greater than the middle element,
you only need to search the key in the second
half of the array.

44Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Binary Search, cont.

 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]
 2 4 7 10 11 45 50 59 60 66 69 70 79

 key is 11

 key < 50
 list

mid

 [0] [1] [2] [3] [4] [5]
 key > 7

 key == 11

highlow

mid highlow

 list

 [3] [4] [5]

mid high low

 list

 2 4 7 10 11 45

 10 11 45

45Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Binary Search, cont.
The binarySearch method returns the index of the
search key if it is contained in the list. Otherwise,
it returns –insertion point - 1. The insertion point is
the point at which the key would be inserted into
the list.

46Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

From Idea to Soluton
/** Use binary search to find the key in the list */
public static int binarySearch(int[] list, int key) {
int low = 0;
int high = list.length - 1;

while (high >= low) {
int mid = (low + high) / 2;
if (key < list[mid])
high = mid - 1;

else if (key == list[mid])
return mid;

else
low = mid + 1;

}

return -1 - low;
}

47Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

The Arrays.binarySearch Method
Since binary search is frequently used in programming, Java provides several
overloaded binarySearch methods for searching a key in an array of int, double,
char, short, long, and float in the java.util.Arrays class. For example, the
following code searches the keys in an array of numbers and an array of
characters.

int[] list = {2, 4, 7, 10, 11, 45, 50, 59, 60, 66, 69, 70, 79};
System.out.println("Index is " +
java.util.Arrays.binarySearch(list, 11));

char[] chars = {'a', 'c', 'g', 'x', 'y', 'z'};
System.out.println("Index is " +
java.util.Arrays.binarySearch(chars, 't'));

For the binarySearch method to work, the array must be pre-sorted in increasing
order.

Return is 4

Return is –4 (insertion
point is 3)

48Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Recursive Implementation
/** Use binary search to find the key in the list */
public static int recursiveBinarySearch(int[] list, int key) {
int low = 0;
int high = list.length - 1;
return recursiveBinarySearch(list, key, low, high);

}

/** Use binary search to find the key in the list between
list[low] list[high] */

public static int recursiveBinarySearch(int[] list, int key,
int low, int high) {
if (low > high) // The list has been exhausted without a match
return -low - 1;

int mid = (low + high) / 2;
if (key < list[mid])
return recursiveBinarySearch(list, key, low, mid - 1);

else if (key == list[mid])
return mid;

else
return recursiveBinarySearch(list, key, mid + 1, high);

}

Optional

49Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Two-dimensional Arrays
// Declare array ref var
dataType[][] refVar;

// Create array and assign its reference to variable
refVar = new dataType[10][10];

// Combine declaration and creation in one statement
dataType[][] refVar = new dataType[10][10];

// Alternative syntax
dataType refVar[][] = new dataType[10][10];

50Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Declaring Variables of Two-
dimensional Arrays and Creating

Two-dimensional Arrays

int[][] matrix = new int[10][10];
or
int matrix[][] = new int[10][10];
matrix[0][0] = 3;

for (int i = 0; i < matrix.length; i++)
for (int j = 0; j < matrix[i].length; j++)
matrix[i][j] = (int)(Math.random() * 1000);

double[][] x;

51Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Two-dimensional Array Illustration

 0 1 2 3 4
 0

7

 0 1 2 3 4

 1

 2

 3

 4

 0

 1

 2

 3

 4

matrix[2][1] = 7; matrix = new int[5][5];

 3

7

 0 1 2
 0

 1

 2

int[][] array = {
 {1, 2, 3},
 {4, 5, 6},
 {7, 8, 9},
 {10, 11, 12}
};

1 2 3

4 5 6

8 9

10 11 12

matrix.length? 5

matrix[0].length? 5 array.length? 4

array[0].length? 3

52Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Declaring, Creating, and Initializing Using
Shorthand Notations

You can also use an array initializer to declare, create and
initialize a two-dimensional array. For example,

int[][] array = new int[4][3];
array[0][0] = 1; array[0][1] = 2; array[0][2] = 3;
array[1][0] = 4; array[1][1] = 5; array[1][2] = 6;
array[2][0] = 7; array[2][1] = 8; array[2][2] = 9;
array[3][0] = 10; array[3][1] = 11; array[3][2] = 12;

int[][] array = {
{1, 2, 3},
{4, 5, 6},
{7, 8, 9},
{10, 11, 12}

};

Same as

53Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Lengths of Two-dimensional
Arrays

x

x[0]

x[1]

x[2]

x[0][0] x[0][1] x[0][2] x[0][3]

x[1][0] x[1][1] x[1][2] x[1][3]

x[2][0] x[2][1] x[2][2] x[2][3]
x.length is 3

x[0].length is 4

x[1].length is 4

x[2].length is 4

int[][] x = new int[3][4];

54Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Lengths of Two-dimensional
Arrays, cont.

int[][] array = {
{1, 2, 3},
{4, 5, 6},
{7, 8, 9},
{10, 11, 12}

};

array.length
array[0].length
array[1].length
array[2].length
array[3].length

array[4].length ArrayIndexOutOfBoundsException

55Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Lengths of Two-dimensional
Arrays

int[][] array = {
{1, 2, 3},
{4, 5, 6},
{7, 8, 9},
{10, 11, 12}

};

array.length
array[0].length
array[1].length
array[2].length
array[3].length

array[4].length ArrayIndexOutOfBoundsException

56Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Ragged Arrays
Each row in a two-dimensional array is itself an array. So,

the rows can have different lengths. Such an array is
known as a ragged array. For example,

int[][] matrix = {
{1, 2, 3, 4, 5},
{2, 3, 4, 5},
{3, 4, 5},
{4, 5},
{5}

};

matrix.length is 5
matrix[0].length is 5
matrix[1].length is 4
matrix[2].length is 3
matrix[3].length is 2
matrix[4].length is 1

57Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Ragged Arrays, cont.

1 2 3 4 5 int[][] triangleArray = {
 {1, 2, 3, 4, 5},
 {2, 3, 4, 5},
 {3, 4, 5},
 {4, 5},
 {5}
};

1 2 3 4

1 2 3

1 2

1 2

58Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Example 5.5
Grading Multiple-Choice Test

Objective: write a
program that grades
multiple-choice test. A B A C C D E E A D

D B A B C A E E A D
E D D A C B E E A D
C B A E D C E E A D
A B D C C D E E A D
B B E C C D E E A D
B B A C C D E E A D
E B E C C D E E A D

0 1 2 3 4 5 6 7 8 9

Student 0
Student 1
Student 2
Student 3
Student 4
Student 5
Student 6
Student 7

Students’ Answers to the Questions:

D B D C C D A E A D

0 1 2 3 4 5 6 7 8 9

Key

Key to the Questions:

GradeExam

59Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Example 5.6
Computing Taxes Using Arrays

Example 4.4, “Computing Taxes with Methods,”
simplified Example 3.1, “Computing Taxes.” Example
4.4 can be further improved using arrays. Rewrite
Example 3.1 using arrays to store tax rates and brackets.

ComputeTax

60Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

307050
156600
96745
37450
10000

153525
85975
56425
23350
6000

307050
171950
112850
46700
12000

307050

67700
141250

27950
6000

38.6%
35%
30%
27%
15%
10%

Refine the table

61Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

156600
85975
171950
141250

307050
153525
307050
307050

96745
56425
112850
67700

37450
23350
46700
27950

6000
10000

12000
6000

Rotate

Single filer

Married jointly

Married separately
Head of household

307050
156600
96745
37450
10000

153525
85975
56425
23350
6000

307050
171950
112850
46700
12000

307050

67700
141250

27950
6000

Reorganize the table

62Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

int[][] brackets = {
{6000, 27950, 67700, 141250, 307050}, // Single filer
{12000, 46700, 112850, 171950, 307050}, // Married jointly
{6000, 23350, 56425, 85975, 153525}, // Married separately
{10000, 37450, 96700, 156600, 307050} // Head of household

};

38.6%
35%

30%

27%

15%

10%

double[] rates = {0.10, 0.15, 0.27, 0.30, 0.35, 0.386};

156600
85975
171950
141250

307050
153525
307050
307050

96745
56425
112850
67700

37450
23350
46700
27950

6000
10000

12000
6000 Single filer

Married jointly

Married separately
Head of household

Declare Two Arrays

63Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Multidimensional Arrays
Occasionally, you will need to represent n-dimensional
data structures. In Java, you can create n-dimensional
arrays for any integer n.

The way to declare two-dimensional array variables and
create two-dimensional arrays can be generalized to
declare n-dimensional array variables and create n-
dimensional arrays for n >= 3. For example, the following
syntax declares a three-dimensional array variable scores,
creates an array, and assigns its reference to scores.

double[][][] scores = new double[10][5][2];

64Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Example 5.7
Calculating Total Scores

Objective: write a program that calculates the total score for
students in a class. Suppose the scores are stored in a three-
dimensional array named scores. The first index in scores refers to
a student, the second refers to an exam, and the third refers to the
part of the exam. Suppose there are 7 students, 5 exams, and each
exam has two parts--the multiple-choice part and the programming
part. So, scores[i][j][0] represents the score on the multiple-choice
part for the i’s student on the j’s exam. Your program displays the
total score for each student.

TotalScore

