
1

1Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Chapter 4 Methods

Chapter 1 Introduction to Computers, Programs,
and Java

Chapter 2 Primitive Data Types and Operations

Chapter 3 Control Statements

Chapter 5 Arrays

Chapter 4 Methods

Basic computer skills such as using Windows,
Internet Explorer, and Microsoft Word

Prerequisites for Part I

2Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Objectives
To create methods, invoke methods, and pass arguments to
a method (§4.2-4.4).
To use method overloading and know ambiguous
overloading (§4.5).
To determine the scope of local variables (§4.6).
To learn the concept of method abstraction (§4.7).
To know how to use the methods in the Math class (§4.8).
To design and implement methods using stepwise
refinement (§4.10).
To write recursive methods (§4.11 Optional).
To group classes into packages (§4.12 Optional).

3Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Introducing Methods
A method is a collection of statements that are
grouped together to perform an operation.

public static int max(int num1, int num2) {

int result;

if (num1 > num2)
 result = num1;
else
 result = num2;

return result;

}

modifier return value type method name formal parameters

return value

method
body

method
header

parameter list

Define a method Invoke a method

int z = max(x, y);

actual parameters
(arguments)

4Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Introducing Methods, cont.
•Method signature is the combination of the
method name and the parameter list.

•The variables defined in the method header are
known as formal parameters.

•When a method is invoked, you pass a value to
the parameter. This value is referred to as actual
parameter or argument.

5Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Introducing Methods, cont.
•A method may return a value. The
returnValueType is the data type of the value the
method returns. If the method does not return a
value, the returnValueType is the keyword void.
For example, the returnValueType in the main
method is void.

6Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Calling Methods

Example 4.1 Testing the max method

This program demonstrates calling a method
max to return the largest of the int values

TestMax

2

7Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Calling Methods, cont.

public static void main(String[] args) {
 int i = 5;
 int j = 2;
 int k = max(i, j);

 System.out.println(
 "The maximum between " + i +
 " and " + j + " is " + k);
}

public static int max(int num1, int num2) {
 int result;

 if (num1 > num2)
 result = num1;
 else
 result = num2;

 return result;
}

pass the value of i
pass the value of j

8Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

CAUTION
A return statement is required for a nonvoid
method. The following method is logically
correct, but it has a compilation error, because the
Java compiler thinks it possible that this method
does not return any value.
public static int sign(int n) {
if (n > 0) return 1;
else if (n == 0) return 0;
else if (n < 0) return –1;

}

To fix this problem, delete if (n<0) in the code.

9Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Reuse Methods from Other Classes
NOTE: One of the benefits of methods is for reuse. The max
method can be invoked from any class besides TestMax. If
you create a new class Test, you can invoke the max method
using ClassName.methodName (i.e., TestMax.max).

10Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Call Stacks

The main method
is invoked.

Space required for the
main method
 k:

j: 2
i: 5

The max method is
invoked.

Space required for the
max method
 result: 5

num2: 2
num1: 5

The max method is
finished and the return
value is sent to k.

The main method
is finished.

Stack is empty

Space required for the
main method
 k:

j: 2
i: 5

Space required for the
main method
 k: 5

j: 2
i: 5

11Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Passing Parameters
public static void nPrintln(String message, int n) {

for (int i = 0; i < n; i++)
System.out.println(message);

}

Suppose you invoke the method using
nPrintln(“Welcome to Java”, 5);

What is the output?

Suppose you invoke the method using
nPrintln(“Computer Science”, 15);

What is the output?

12Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Pass by Value

Example 4.2 Testing Pass by value

This program demonstrates passing values
to the methods.

TestPassByValue

3

13Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Pass by Value, cont.

The main method
is invoked

The values of num1 and num2 are
passed to n1 and n2. Executing swap
does not affect num1 and num2.

Space required for the
main method

num2: 2
num1: 1

The swap method
is invoked

Space required for the
main method

num2: 2
num1: 1

Space required for the
swap method
 temp:

n2: 2
n1: 1

The swap method
is finished

Space required for the
main method

num2: 2
num1: 1

The main method
is finished

Stack is empty

14Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Overloading Methods
Example 4.3 Overloading the max Method

public static double max(double num1, double
num2) {
if (num1 > num2)
return num1;

else
return num2;

}

TestMethodOverloading

15Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Ambiguous Invocation

Sometimes there may be two or more
possible matches for an invocation of a
method, but the compiler cannot determine
the most specific match. This is referred to
as ambiguous invocation. Ambiguous
invocation is a compilation error.

16Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Ambiguous Invocation
public class AmbiguousOverloading {
public static void main(String[] args) {
System.out.println(max(1, 2));

}

public static double max(int num1, double num2) {
if (num1 > num2)

return num1;
else

return num2;
}

public static double max(double num1, int num2) {
if (num1 > num2)

return num1;
else

return num2;
}

}

17Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Example 4.4 Computing Taxes
with Methods

Example 3.1, “Computing Taxes,” uses if statements to
check the filing status and computes the tax based on the
filing status. Simplify Example 3.1 using methods. Each
filing status has six brackets.
The code for computing taxes is nearly same for each filing
status except that each filing status has different bracket
ranges. For example, the single filer status has six brackets
[0, 6000], (6000, 27950], (27950, 67700], (67700,
141250], (141250, 307050], (307050, ∞), and the married
file jointly status has six brackets [0, 12000], (12000,
46700], (46700, 112850], (112850, 171950], (171950,
307050], (307050, ∞).

18Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Example 4.4 cont.
The first bracket of each filing status is taxed at 10%, the second
15%, the third 27%, the fourth 30%, the fifth 35%, and the sixth
38.6%. So you can write a method with the brackets as arguments to
compute the tax for the filing status. The signature of the method is:

ComputeTaxWithMethod

public static double computeTax(double income,
 int r1, int r2, int r3, int r4, int r5)

[0, 6000], (6000, 27950], (27950, 67700], (67700, 141250], (141250, 307050], (307050, ∞)

400000

For example, you can invoke computeTax(400000, 6000, 27950,
67700, 141250, 307050) to compute the tax for single filers with
$400,000 of taxable income:

4

19Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Scope of Local Variables
A local variable: a variable defined inside a

method.
Scope: the part of the program where the

variable can be referenced.
The scope of a local variable starts from its

declaration and continues to the end of the
block that contains the variable. A local
variable must be declared before it can be
used.

20Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Scope of Local Variables, cont.
You can declare a local variable with the
same name multiple times in different non-
nesting blocks in a method, but you cannot
declare a local variable twice in nested
blocks.

21Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Scope of Local Variables, cont.
A variable declared in the initial action part of a for
loop header has its scope in the entire loop. But a
variable declared inside a for loop body has its scope
limited in the loop body from its declaration and to
the end of the block that contains the variable.

public static void method1() {
 .
 .
 for (int i = 1; i < 10; i++) {
 .
 .
 int j;
 .
 .
 .
 }
}

The scope of j

The scope of i

22Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Scope of Local Variables, cont.

public static void method1() {
 int x = 1;
 int y = 1;

 for (int i = 1; i < 10; i++) {

 x += i;
 }

 for (int i = 1; i < 10; i++) {

 y += i;
 }
}

It is fine to declare i in two
non-nesting blocks

 public static void method2() {

 int i = 1;
 int sum = 0;

 for (int i = 1; i < 10; i++)

 sum += i;
 }

 }

It is wrong to declare i in
two nesting blocks

23Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Scope of Local Variables, cont.
// Fine with no errors
public static void correctMethod() {
int x = 1;
int y = 1;
// i is declared
for (int i = 1; i < 10; i++) {
x += i;

}
// i is declared again
for (int i = 1; i < 10; i++) {
y += i;

}
}

24Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Scope of Local Variables, cont.
// With no errors
public static void incorrectMethod() {
int x = 1;
int y = 1;
for (int i = 1; i < 10; i++) {
int x = 0;
x += i;

}
}

5

25Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Method Abstraction
You can think of the method body as a black box
that contains the detailed implementation for the
method.

Method Signature

Method body
Black Box

Optional arguments
for Input

Optional return
value

26Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Benefits of Methods
• Write a method once and reuse it anywhere.

• Information hiding. Hide the implementation
from the user.

• Reduce complexity.

27Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

The Math Class
Class constants:
– PI
– E

Class methods:
– Trigonometric Methods
– Exponent Methods
– Rounding Methods
– min, max, abs, and random Methods

28Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Trigonometric Methods
sin(double a)

cos(double a)

tan(double a)

acos(double a)

asin(double a)

atan(double a)

Radians

toRadians(90)

Examples:

Math.sin(0) returns 0.0
Math.sin(Math.PI / 6)

returns 0.5
Math.sin(Math.PI / 2)

returns 1.0
Math.cos(0) returns 1.0
Math.cos(Math.PI / 6)

returns 0.866
Math.cos(Math.PI / 2)

returns 0

29Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Exponent Methods
exp(double a)
Returns e raised to the power of a.

log(double a)
Returns the natural logarithm of a.

pow(double a, double b)
Returns a raised to the power of b.

sqrt(double a)
Returns the square root of a.

Examples:

Math.pow(2, 3) returns
8.0

Math.pow(3, 2) returns
9.0

Math.pow(3.5, 2.5)
returns 22.91765

Math.sqrt(4) returns
2.0

Math.sqrt(10.5)
returns 3.24

30Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Rounding Methods
double ceil(double x)
x rounded up to its nearest integer. This integer is returned as a double

value.
double floor(double x)
x is rounded down to its nearest integer. This integer is returned as a

double value.
double rint(double x)
x is rounded to its nearest integer. If x is equally close to two integers,

the even one is returned as a double.
int round(float x)
Return (int)Math.floor(x+0.5).
long round(double x)
Return (long)Math.floor(x+0.5).

6

31Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Rounding Methods Examples
Math.ceil(2.1) returns 3.0
Math.ceil(2.0) returns 2.0
Math.ceil(-2.0) returns –2.0
Math.ceil(-2.1) returns -2.0
Math.floor(2.1) returns 2.0
Math.floor(2.0) returns 2.0
Math.floor(-2.0) returns –2.0
Math.floor(-2.1) returns -3.0
Math.rint(2.1) returns 2.0
Math.rint(2.0) returns 2.0
Math.rint(-2.0) returns –2.0
Math.rint(-2.1) returns -2.0
Math.rint(2.5) returns 2.0
Math.rint(-2.5) returns -2.0
Math.round(2.6f) returns 3
Math.round(2.0) returns 2
Math.round(-2.0f) returns -2

Math.round(-2.6) returns -3
32Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All

rights reserved. 0-13-148952-6

min, max, and abs
max(a, b)and min(a, b)
Returns the maximum or
minimum of two parameters.

abs(a)
Returns the absolute value of the
parameter.

random()
Returns a random double value
in the range [0.0, 1.0).

Examples:

Math.max(2, 3) returns 3
Math.max(2.5, 3) returns

3.0
Math.min(2.5, 3.6)

returns 2.5
Math.abs(-2) returns 2

Math.abs(-2.1) returns
2.1

33Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

The random Methods
Generates a random double value greater than or equal to 0.0 and less
than 1.0 (0 <= Math.random() < 1.0).

Examples:

(int)(Math.random() * 10) Returns a random integer
between 0 and 9.

50 + (int)(Math.random() * 50) Returns a random integer
between 50 and 99.

In general,

a + Math.random() * b Returns a random number between

a and a + b, excluding a + b.

34Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Case Study: Generating Random
Characters

Computer programs process numerical data and characters.
You have seen many examples involve numerical data. It
is also important to understand characters and how to
process them.
As introduced in Section 2.9, each character has a unique
Unicode between 0 and FFFF in hexadecimal (65535 in
decimal). To generate a random character is to generate a
random integer between 0 and 65535 using the following
expression: (note that since 0 <= Math.random() < 1.0, you
have to add 1 to 65535.)

(int)(Math.random() * (65535 + 1))

35Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Case Study: Generating Random
Characters, cont.

Now let us consider how to generate a random
lowercase letter. The Unicode for lowercase letters
are consecutive integers starting from the Unicode
for 'a', then for 'b', 'c', ..., and 'z'. The Unicode for 'a'
is

(int)'a'
So, a random integer between (int)'a' and (int)'z' is

(int)((int)'a' + Math.random() * ((int)'z' - (int)'a' + 1)

36Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Case Study: Generating Random
Characters, cont.

Now let us consider how to generate a random
lowercase letter. The Unicode for lowercase letters
are consecutive integers starting from the Unicode
for 'a', then for 'b', 'c', ..., and 'z'. The Unicode for 'a'
is

(int)'a'
So, a random integer between (int)'a' and (int)'z' is

(int)((int)'a' + Math.random() * ((int)'z' - (int)'a' + 1)

7

37Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Case Study: Generating Random
Characters, cont.

As discussed in Section 2.9.4, all numeric operators
can be applied to the char operands. The char
operand is cast into a number if the other operand
is a number or a character. So, the preceding
expression can be simplified as follows:

'a' + Math.random() * ('z' - 'a' + 1)

So a random lowercase letter is
(char)('a' + Math.random() * ('z' - 'a' + 1))

38Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Case Study: Generating Random
Characters, cont.

To generalize the foregoing discussion, a random character
between any two characters ch1 and ch2 with ch1 < ch2
can be generated as follows:

(char)(ch1 + Math.random() * (ch2 – ch1 + 1))

39Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

The RandomCharacter Class
// RandomCharacter.java: Generate random characters
public class RandomCharacter {
/** Generate a random character between ch1 and ch2 */
public static char getRandomCharacter(char ch1, char ch2) {
return (char)(ch1 + Math.random() * (ch2 - ch1 + 1));

}

/** Generate a random lowercase letter */
public static char getRandomLowerCaseLetter() {
return getRandomCharacter('a', 'z');

}

/** Generate a random uppercase letter */
public static char getRandomUpperCaseLetter() {
return getRandomCharacter('A', 'Z');

}

/** Generate a random digit character */
public static char getRandomDigitCharacter() {
return getRandomCharacter('0', '9');

}

/** Generate a random character */
public static char getRandomCharacter() {
return getRandomCharacter('\u0000', '\uFFFF');

}
}

40Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Stepwise Refinement (Optional)
The concept of method abstraction can be applied
to the process of developing programs. When
writing a large program, you can use the “divide
and conquer” strategy, also known as stepwise
refinement, to decompose it into subproblems. The
subproblems can be further decomposed into
smaller, more manageable problems.

PrintCalendar

41Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

PrintCalender Example
Let us use the PrintCalendar example demonstrate the
stepwise refinement approach.

42Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Design Diagram
 printCalendar

(main)

readInput printMonth

getStartDay

printMonthTitle printMonthBody

getTotalNumOfDays

getNumOfDaysInMonth

getMonthName

isLeapYear

8

43Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Implementation: Top-Down

A Skeleton for printCalendar

Top-down approach is to implement one method in the
structure chart at a time from the top to the bottom. Stubs
can be used for the methods waiting to be implemented. A
stub is a simple but incomplete version of a method. The
use of stubs enables you to test invoking the method from
a caller. Implement the main method first and then use a
stub for the printMonth method. For example, let
printMonth display the year and the month in the stub.
Thus, your program may begin like this:

44Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Implementation: Bottom-Up
Bottom-up approach is to implement one method in the
structure chart at a time from the bottom to the top. For
each method implemented, write a test program to test it.
Both top-down and bottom-up methods are fine. Both
approaches implement the methods incrementally and
help to isolate programming errors and makes debugging
easy. Sometimes, they can be used together.

45Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Recursion
Example 4.5 Computing Factorial

factorial(0) = 1;
factorial(n) = n*factorial(n-1);

Factorial(3) = 3 * factorial(2) = 3 * (2 * factorial(1)) = 3 *
(2 * (1 * factorial(0))) =

3 * (2 * (1 * 1))) = 3 * (2 * 1) = 3 * 2 = 6

ComputeFactorial

Optional

46Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Example 4.5 Computing
Factorial, cont.

factorial(4) = 4*factorial(3)

factorial(3) = 3*factorial(2)

factorial(2) = 2*factorial(1)

factorial(1) = 1*factorial(0)

Step 6: factorial(1) returns 1 (1*1)

main method:
factorial(4)

Step 1: factorial(4) calls factorial(3)

factorial(4) is called in the main

Step 2: factorial(3) calls factorial(2)

Step 3: factorial(2) calls factorial(1)

factorial(0) = 1

Step 4: factorial(1) calls factorial(0)

Step 5: factorial(0) returns 1

Step 7: factorial(2) returns 2 (2*1)

Step 8: factorial(3) returns 6 (3*2)

Step 9: factorial(4) returns 24 (4*6)

47Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Example 4.5 Computing
Factorial, cont.

Space Required
for factorial(4)

1 Space Required
for factorial(4)

2 Space Required
for factorial(3)

Space Required
for factorial(4)

3

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(4)

4

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(1)

Space Required
for factorial(4)

5

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(1)

Space Required
for factorial(0)

Space Required
for factorial(4)

6

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(1)

Space Required
for factorial(4)

7

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(4)

8 Space Required
for factorial(3)

Space Required
for factorial(4)

9

48Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Fibonacci Numbers
Example 4.6 Computing Finonacci Numbers

Finonacci series: 0 1 1 2 3 5 8 13 21 34 55 89…

indices: 0 1 2 3 4 5 6 7 8 9 10 11

fib(0) = 0;

fib(1) = 1;

fib(index) = fib(index -1) + fib(index -2); index >=2

fib(3) = fib(2) + fib(1) = (fib(1) + fib(0)) + fib(1) = (1 + 0)
+fib(1) = 1 + fib(1) = 1 + 1 = 2

ComputeFibonacci

9

49Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Fibonnaci Numbers, cont.

fib(4)=

fib(3) + fib(2)

fib(3)=
fib(2) + fib(1)

fib(2)=
fib(1) + fib(0)

fib(1)=
1

fib(2)=
fib(1) + fib(0)

fib(0)=
0

fib(1)=
1

fib(1)=
1

fib(0)=
0

1: call fib(3)

2: call fib(2)

3: call fib(1)

4: return fib(1)

7: return fib(2)

5: call fib(0) 6: return fib(0)

8: call fib(1)
9: return fib(1)

10: return fib(3) 11: call fib(2)
16: return fib(2)

12: call fib(1)

13: return fib(1)
14: return fib(0)

15: return fib(0)

50Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Towers of Hanoi

Example 4.7 Solving the Towers of Hanoi
Problem

Solve the towers of Hanoi problem.

TowersOfHanoi

51Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Towers of Hanoi, cont.

A

A

B

C

Step 0: Starting status

C

B

Step 2: Move disk 2 from A to C

A B

Step 3: Move disk 1 from B to C

C

A B

Step 4: Move disk 3 from A to B

C

A B

Step 5: Move disk 1 from C to A

CA B

Step 1: Move disk 1 from A to B

C

A B

Step 7: Mve disk 1 from A to B

C

A B

Step 6: Move disk 2 from C to B

C

52Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Exercise 4.15 GCD
gcd(2, 3) = 1
gcd(2, 10) = 2
gcd(25, 35) = 5
gcd(205, 301) = 5
gcd(m, n)
Approach 1: Brute-force, start from min(n, m) down to 1,

to check if a number is common divisor for both m and
n, if so, it is the greatest common divisor.

Approach 2: Euclid’s algorithm
Approach 3: Recursive method

53Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Approach 2: Euclid’s algorithm
// Get absolute value of m and n;
t1 = Math.abs(m); t2 = Math.abs(n);
// r is the remainder of t1 divided by t2;
r = t1 % t2;
while (r != 0) {

t1 = t2;
t2 = r;
r = t1 % t2;

}

// When r is 0, t2 is the greatest common
// divisor between t1 and t2
return t2;

54Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Approach 3: Recursive Method

gcd(m, n) = n if m % n = 0;
gcd(m, n) = gcd(n, m % n); otherwise;

10

55Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Package
There are three reasons for using packages:

1. To avoid naming conflicts. When you develop
reusable classes to be shared by other programmers,
naming conflicts often occur. To prevent this, put your
classes into packages so that they can be referenced
through package names.

2. To distribute software conveniently. Packages group
related classes so that they can be easily distributed.

3. To protect classes. Packages provide protection so that
the protected members of the classes are accessible to
the classes in the same package, but not to the external
classes.

Optional

56Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Package-Naming Conventions
Packages are hierarchical, and you can have packages within
packages. For example, java.lang.Math indicates that Math is a class
in the package lang and that lang is a package in the package java.
Levels of nesting can be used to ensure the uniqueness of package
names.

Choosing a unique name is important because your package may be
used on the Internet by other programs. Java designers recommend
that you use your Internet domain name in reverse order as a
package prefix. Since Internet domain names are unique, this
prevents naming conflicts. Suppose you want to create a package
named mypackage on a host machine with the Internet domain
name prenhall.com. To follow the naming convention, you would
name the entire package com.prenhall.mypackage. By convention,
package names are all in lowercase.

57Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Package Directories
Java expects one-to-one mapping of the package name and the file
system directory structure. For the package named
com.prenhall.mypackage, you must create a directory, as shown in
the figure. In other words, a package is actually a directory that
contains the bytecode of the classes.

com.prenhall.mypackage

The com directory does not have to be the root
directory. In order for Java to know where
your package is in the file system, you must
modify the environment variable classpath so
that it points to the directory in which your
package resides.

58Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Setting classpath Environment
The com directory does not have to be the root directory. In order for Java to know where
your package is in the file system, you must modify the environment variable classpath so
that it points to the directory in which your package resides.

Suppose the com directory is under c:\book. The following line adds c:\book into the
classpath:

classpath=.;c:\book;

The period (.) indicating the current directory is always in classpath. The directory
c:\book is in classpath so that you can use the package com.prenhall.mypackage in the
program.

59Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Setting Paths in JBuilder Optional for
JBuilder

An IDE such as JBuilder uses the source directory path to specify where the
source files are stored and uses the class directory path to specify where the
compiled class files are stored.

A source file must be stored in a package directory under the source directory
path. For example, if the source directory is c:\mysource and the package
statement in the source code is package com.prenhall.mypackage, then the source
code file must be stored in c:\mysource\com\prenhall\mypackage.

A class file must be stored in a package directory under the class directory path.
For example, if the class directory is c:\myclass and the package statement in the
source code is package com.prenhall.mypackage, then the class file must be stored
in c:\myclass\com\prenhall\mypackage.

60Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Putting Classes into Packages
Every class in Java belongs to a package. The class is added to the package when
it is compiled. All the classes that you have used so far in this book were placed in
the current directory (a default package) when the Java source programs were
compiled. To put a class in a specific package, you need to add the following line
as the first noncomment and nonblank statement in the program:

package packagename;

11

61Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Example 4.8 Putting Classes into Packages
Problem
This example creates a class named Format and places it in the package
com.prenhall.mypackage. The Format class contains the format(number,
numOfDecimalDigits) method that returns a new number with the specified
number of digits after the decimal point. For example, format(10.3422345, 2)
returns 10.34, and format(-0.343434, 3) returns –0.343.

Solution
1. Create Format.java as follows and save it into c:\book\com\prenhall\mypackage.

// Format.java: Format number.
package com.prenhall.mypackage;

public class Format {
public static double format(
double number, int numOfDecimalDigits) {
return Math.round(number * Math.pow(10, numOfDecimalDigits)) /
Math.pow(10, numOfDecimalDigits);

}
}

2. Compile Format.java. Make sure Format.class is in
c:\book\com\prenhall\mypackage.

62Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Using Classes from Packages
There are two ways to use classes from a package.
• One way is to use the fully qualified name of the class. For example, the fully
qualified name for JOptionPane is javax.swing.JOptionPane. For Format in the
preceding example, it is com.prenhall.mypackage.Format. This is convenient if the
class is used a few times in the program.
• The other way is to use the import statement. For example, to import all the
classes in the javax.swing package, you can use

import javax.swing.*;

An import that uses a * is called an import on demand declaration. You can also
import a specific class. For example, this statement imports
javax.swing.JOptionPane:

import javax.swing.JOptionPane;

The information for the classes in an imported package is not read in at compile time
or runtime unless the class is used in the program. The import statement simply tells
the compiler where to locate the classes.

63Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Example 4.9 Using Packages

Problem
This example shows a program that uses the Format class in the
com.prenhall.mypackage.mypackage package.

Solution
1. Create TestFormatClass.java as follows and save it into c:\book.
The following code gives the solution to the problem.

// TestFormatClass.java: Demonstrate using the Format class
import com.prenhall.mypackage.Format;

public class TestFormatClass {
/** Main method */
public static void main(String[] args) {
System.out.println(Format.format(10.3422345, 2));
System.out.println(Format.format(-0.343434, 3));

}
}

