
1

Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All rights reserved. 0-13-148952-61

Chapter 3 Control Statements

Chapter 1 Introduction to Computers, Programs,
and Java

Chapter 2 Primitive Data Types and Operations

Chapter 3 Control Statements

Chapter 5 Arrays

Chapter 4 Methods

Basic computer skills such as using Windows,
Internet Explorer, and Microsoft Word

Prerequisites for Part I

Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All rights reserved. 0-13-148952-62

Objectives
To understand the flow of control in selection and loop statements
(§3.2-3.7).
To use Boolean expressions to control selection statements and loop
statements (§3.2-3.7).
To implement selection control using if and nested if statements
(§3.2).
To implement selection control using switch statements (§3.2).
To write expressions using the conditional operator (§3.2).
To use while, do-while, and for loop statements to control the
repetition of statements (§3.4).
To write nested loops (§3.4).
To know the similarities and differences of three types of loops
(§3.5).
To implement program control with break and continue (§3.6).

3Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Selection Statements
if Statements

switch Statements

Conditional Operators

4Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Simple if Statements

Boolean
Expression

true

Statement(s)

false
(radius >= 0)

true

 area = radius * radius * PI;
 System.out.println("The area for the circle of " +
 "radius " + radius + " is " + area);

false

(A) (B)

if (booleanExpression) {
statement(s);

}

if (radius >= 0) {
area = radius * radius * PI;
System.out.println("The area"

“ for the circle of radius "
+ "radius is " + area);

}

5Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Note

if ((i > 0) && (i < 10)) {
 System.out.println("i is an " +
 + "integer between 0 and 10");
}

(a)

Equivalent

(b)

if ((i > 0) && (i < 10))
 System.out.println("i is an " +
 + "integer between 0 and 10");

Outer parentheses required Braces can be omitted if the block contains a single
statement

6Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Caution
Adding a semicolon at the end of an if clause is a common
mistake.
if (radius >= 0);
{

area = radius*radius*PI;
System.out.println(

"The area for the circle of radius " +
radius + " is " + area);

}
This mistake is hard to find, because it is not a compilation error or
a runtime error, it is a logic error.
This error often occurs when you use the next-line block style.

Wrong

2

7Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

The if...else Statement
if (booleanExpression) {

statement(s)-for-the-true-case;
}
else {

statement(s)-for-the-false-case;
}

Boolean
Expression

false true

Statement(s) for the false caseStatement(s) for the true case

8Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

if...else Example
if (radius >= 0) {

area = radius * radius * 3.14159;

System.out.println("The area for the “
+ “circle of radius " + radius +
" is " + area);

}
else {

System.out.println("Negative input");
}

9Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Multiple Alternative if Statements

 if (score >= 90.0)
 grade = 'A';
else
 if (score >= 80.0)
 grade = 'B';
 else
 if (score >= 70.0)
 grade = 'C';
 else
 if (score >= 60.0)
 grade = 'D';
 else
 grade = 'F';

Equivalent

if (score >= 90.0)
 grade = 'A';
else if (score >= 80.0)
 grade = 'B';
else if (score >= 70.0)
 grade = 'C';
else if (score >= 60.0)
 grade = 'D';
else
 grade = 'F';

10Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Note
The else clause matches the most recent if clause in the
same block.

 int i = 1;
int j = 2;
int k = 3;

if (i > j)
 if (i > k)
 System.out.println("A");
else
 System.out.println("B");

(a)

Equivalent

(b)

int i = 1;
int j = 2;
int k = 3;

if (i > j)
 if (i > k)
 System.out.println("A");
 else
 System.out.println("B");

11Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Note, cont.
Nothing is printed from the preceding statement. To
force the else clause to match the first if clause, you must
add a pair of braces:

int i = 1;
int j = 2;
int k = 3;
if (i > j) {
if (i > k)

System.out.println("A");
}
else
System.out.println("B");

This statement prints B.

12Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

TIP
 if (number % 2 == 0)
 even = true;
else
 even = false;

(a)

Equivalent

boolean even
 = number % 2 == 0;

(b)

3

13Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

CAUTION

 if (even == true)
 System.out.println(
 "It is even.");

(a)

Equivalent if (even)
 System.out.println(
 "It is even.");

(b)

14Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Example 3.1 Computing Taxes
The US federal personal income tax is calculated based on
the filing status and taxable income. There are four filing
statuses: single filers, married filing jointly, married filing
separately, and head of household. The tax rates for 2002
are shown in Table 3.1.

15Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Example 3.1 Computing Taxes, cont.

Compute TaxWithSelectionStatement Run

if (status == 0) {
// Compute tax for single filers

}
else if (status == 1) {
// Compute tax for married file jointly

}
else if (status == 2) {
// Compute tax for married file separately

}
else if (status == 3) {
// Compute tax for head of household

}
else {
// Display wrong status

}

16Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

switch Statements
switch (status) {
case 0: compute taxes for single filers;

break;
case 1: compute taxes for married file jointly;

break;
case 2: compute taxes for married file separately;

break;
case 3: compute taxes for head of household;

break;
default: System.out.println("Errors: invalid status");

System.exit(0);
}

17Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

switch Statement Flow Chart

status is 0
Compute tax for single filers break

Compute tax for married file jointly break
status is 1

Compute tax for married file separatly break
status is 2

Compute tax for head of household break
status is 3

Default actions
default

Next Statement

18Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

switch Statement Rules

switch (switch-expression) {
case value1: statement(s)1;

break;
case value2: statement(s)2;

break;
…
case valueN: statement(s)N;

break;
default: statement(s)-for-default;

}

The switch-expression
must yield a value of char,
byte, short, or int type and
must always be enclosed in
parentheses.

The value1, ..., and valueN must
have the same data type as the
value of the switch-expression.
The resulting statements in the
case statement are executed when
the value in the case statement
matches the value of the switch-
expression. Note that value1, ...,
and valueN are constant
expressions, meaning that they
cannot contain variables in the
expression, such as 1 + x.

4

19Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

switch Statement Rules

The keyword break is optional,
but it should be used at the end of
each case in order to terminate the
remainder of the switch
statement. If the break statement
is not present, the next case
statement will be executed.

switch (switch-expression) {
case value1: statement(s)1;

break;
case value2: statement(s)2;

break;
…
case valueN: statement(s)N;

break;
default: statement(s)-for-default;

}

The default case, which is
optional, can be used to perform
actions when none of the
specified cases matches the
switch-expression. The case statements are executed in sequential

order, but the order of the cases (including the
default case) does not matter. However, it is good
programming style to follow the logical sequence
of the cases and place the default case at the end.

20Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Conditional Operator
if (x > 0)

y = 1
else

y = -1;

is equivalent to

y = (x > 0) ? 1 : -1;
(booleanExpression) ? expression1 : expression2

Ternary operator
Binary operator
Unary operator

21Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Conditional Operator

if (num % 2 == 0)
System.out.println(num + “is even”);

else
System.out.println(num + “is odd”);

System.out.println(
(num % 2 == 0)? num + “is even” :
num + “is odd”);

22Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Conditional Operator, cont.

(booleanExp) ? exp1 : exp2

23Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Repetitions
while Loops

do-while Loops
for Loops

break and continue

24Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

while Loop Flow Chart
while (loop-continuation-condition) {

// loop-body;

Statement(s);

}

int count = 0;

while (count < 100) {

System.out.println("Welcome to Java!");

count++;

}

Loop
Continuation
Condition?

true

Statement(s)
(loop body)

false
(count < 100)?

true

System.out.println("Welcome to Java!");
count++;

false

(A) (B)

count = 0;

5

25Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Example 3.2: Using while Loops

Problem: Write a program that reads and
calculates the sum of an unspecified
number of integers. The input 0 signifies
the end of the input.

TestWhile

26Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Caution
Don’t use floating-point values for equality checking in
a loop control. Since floating-point values are
approximations, using them could result in imprecise
counter values and inaccurate results. This example uses
int value for data. If a floating-point type value is used
for data, (data != 0) may be true even though data is 0.

// data should be zero
double data = Math.pow(Math.sqrt(2), 2) - 2;

if (data == 0)
System.out.println("data is zero");

else
System.out.println("data is not zero");

27Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

do-while Loop

do {

// Loop body;

Statement(s);

} while (loop-continuation-condition);

Loop
Continuation
Condition?

true

Statement(s)
(loop body)

false

28Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

for Loops
for (initial-action; loop-

continuation-condition;
action-after-each-iteration) {

// loop body;
Statement(s);

}

int i;
for (i = 0; i < 100; i++) {

System.out.println(
"Welcome to Java!");

}

Loop
Continuation
Condition?

true
Statement(s)
(loop body)

false

(A)

Action-After-Each-Iteration

Intial-Action

(i < 100)?

true
 System.out.println(
 "Welcome to Java");

false

(B)

i++

i = 0

29Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Note
The initial-action in a for loop can be a list of zero or more
comma-separated expressions. The action-after-each-
iteration in a for loop can be a list of zero or more comma-
separated statements. Therefore, the following two for
loops are correct. They are rarely used in practice,
however.

for (int i = 1; i < 100; System.out.println(i++));

for (int i = 0, j = 0; (i + j < 10); i++, j++) {

// Do something

}
30Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All

rights reserved. 0-13-148952-6

Note
If the loop-continuation-condition in a for loop is omitted,
it is implicitly true. Thus the statement given below in (A),
which is an infinite loop, is correct. Nevertheless, I
recommend that you use the equivalent loop in (B) to
avoid confusion:

 for (; ;) {
 // Do something
}

(a)

Equivalent while (true) {
 // Do something
}

(b)

6

31Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Example 3.3 Using for Loops

Problem: Write a program that sums a series that starts with
0.01 and ends with 1.0. The numbers in the series will
increment by 0.01, as follows: 0.01 + 0.02 + 0.03 and so on.

TestSum Run

32Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Example 3.4 Displaying the
Multiplication Table

Problem: Write a program that uses nested for loops to print a
multiplication table.

TestMultiplicationTable

33Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Which Loop to Use?
The three forms of loop statements, while, do-while, and for, are
expressively equivalent; that is, you can write a loop in any of these
three forms. For example, a while loop in (A) in the following figure
can always be converted into the following for loop in (B):

A for loop in (A) in the following figure can generally be converted into the
following while loop in (B) except in certain special cases (see Review Question
3.19 for one of them):

 for (initial-action;
 loop-continuation-condition;
 action-after-each-iteration) {
 // Loop body;
}

(A)

Equivalent

(B)

initial-action;
while (loop-continuation-condition) {
 // Loop body;
 action-after-each-iteration;
}

 while (loop-continuation-condition) {
 // Loop body
}

(A)

Equivalent

(B)

for (; loop-continuation-condition;)
 // Loop body
}

34Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Recommendations
I recommend that you use the one that is most intuitive
and comfortable for you. In general, a for loop may be
used if the number of repetitions is known, as, for
example, when you need to print a message 100 times. A
while loop may be used if the number of repetitions is not
known, as in the case of reading the numbers until the
input is 0. A do-while loop can be used to replace a while
loop if the loop body has to be executed before testing the
continuation condition.

35Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Caution
Adding a semicolon at the end of the for clause before
the loop body is a common mistake, as shown below:

for (int i=0; i<10; i++);
{
System.out.println("i is " + i);

}

Logic
Error

36Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Caution, cont.
Similarly, the following loop is also wrong:
int i=0;
while (i < 10);
{
System.out.println("i is " + i);
i++;

}
In the case of the do loop, the following semicolon is
needed to end the loop.
int i=0;
do {
System.out.println("i is " + i);
i++;

} while (i<10);

Logic Error

Correct

7

37Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Using the Keywords break and continue

false

true

Statement(s)

Next
Statement

 Continuation
 condition?

Statement(s)

break

38Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

The continue Keyword

false

true

Statement(s)

Next
Statement

 Continue
 condition?

Statement(s)

continue

39Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Using break and continue
Examples for using the break and continue
keywords:

Example 3.5: TestBreak.java

Example 3.6: TestContinue.java

TestBreak

TestContinue

Run

Run

40Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Example 3.7
Finding the Greatest Common Divisor

Problem: Write a program that prompts the user to enter two positive
integers and finds their greatest common divisor.

Solution: Suppose you enter two integers 4 and 2, their greatest
common divisor is 2. Suppose you enter two integers 16 and 24, their
greatest common divisor is 8. So, how do you find the greatest
common divisor? Let the two input integers be n1 and n2. You know
number 1 is a common divisor, but it may not be the greatest commons
divisor. So you can check whether k (for k = 2, 3, 4, and so on) is a
common divisor for n1 and n2, until k is greater than n1 or n2.

GreatestCommonDivisor

41Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Example 3.8
Finding the Sales Amount

Problem: You have just started a sales job in a department store. Your
pay consists of a base salary and a commission. The base salary is
$5,000. The scheme shown below is used to determine the
commission rate.

Sales Amount Commission Rate
$0.01–$5,000 8 percent
$5,000.01–$10,000 10 percent
$10,000.01 and above 12 percent

Your goal is to earn $30,000 in a year. Write a program that will find
out the minimum amount of sales you have to generate in order to
make $30,000.

FindSalesAmount

42Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Example 3.9
Displaying a Pyramid of Numbers

Problem: Write a program that prompts the user to enter an integer
from 1 to 15 and displays a pyramid. For example, if the input integer
is 12, the output is shown below.

PrintPyramid

8

43Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Example 3.10
Displaying Prime Numbers

Problem: Write a program that displays the first 50 prime numbers in
five lines, each of which contains 10 numbers. An integer greater than
1 is prime if its only positive divisor is 1 or itself. For example, 2, 3, 5,
and 7 are prime numbers, but 4, 6, 8, and 9 are not.

Solution: The problem can be broken into the following tasks:
•For number = 2, 3, 4, 5, 6, ..., test whether the number is prime.
•Determine whether a given number is prime.
•Count the prime numbers.
•Print each prime number, and print 10 numbers per line.

PrimeNumber

