
1

1Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Chapter 2 Primitive Data Types and
Operations

Chapter 1 Introduction to Computers, Programs,
and Java

Chapter 2 Primitive Data Types and Operations

Chapter 3 Control Statements

Chapter 5 Arrays

Chapter 4 Methods

Basic computer skills such as using Windows,
Internet Explorer, and Microsoft Word

Prerequisites for Part I

2Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Objectives
To write Java programs to perform simple calculations (§2.2).
To use identifiers to name variables, constants, methods, and classes (§2.3).
To use variables to store data (§2.4-2.5).
To program with assignment statements and assignment expressions (§2.5).
To use constants to store permanent data (§2.6).
To declare Java primitive data types: byte, short, int, long, float, double, char, and
boolean (§2.7 – 2.10).
To use Java operators to write expressions (§2.7 – 2.10).
To know the rules governing operand evaluation order, operator precedence, and
operator associativity (§2.11 – 2.12).
To represent a string using the String type. (§2.13)
To obtain input from console (§2.16 Optional).
To format output using JDK 1.5 printf (§2.17).
To become familiar with Java documentation, programming style, and naming
conventions (§2.18).
To distinguish syntax errors, runtime errors, and logic errors (§2.19).

3Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Introducing Programming with an
Example

Example 2.1 Computing the Area of a
Circle

This program computes the area of the
circle.

ComputeArea

4Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Identifiers
An identifier is a sequence of characters that consist of
letters, digits, underscores (_), and dollar signs ($).
An identifier must start with a letter, an underscore (_),
or a dollar sign ($). It cannot start with a digit.
– An identifier cannot be a reserved word. (See Appendix A,

“Java Keywords,” for a list of reserved words).

An identifier cannot be true, false, or
null.
An identifier can be of any length.

5Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Variables
// Compute the first area
radius = 1.0;
area = radius * radius * 3.14159;
System.out.println("The area is “ +
area + " for radius "+radius);

// Compute the second area
radius = 2.0;
area = radius * radius * 3.14159;
System.out.println("The area is “ +
area + " for radius "+radius);

6Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Declaring Variables
int x; // Declare x to be an

// integer variable;

double radius; // Declare radius to
// be a double variable;

char a; // Declare a to be a
// character variable;

2

7Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Assignment Statements
x = 1; // Assign 1 to x;

radius = 1.0; // Assign 1.0 to radius;

a = 'A'; // Assign 'A' to a;

8Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Declaring and Initializing
in One Step

int x = 1;

double d = 1.4;

float f = 1.4;

Is this statement correct?

9Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Constants
final datatype CONSTANTNAME = VALUE;

final double PI = 3.14159;
final int SIZE = 3;

10Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Numerical Data Types

byte 8 bits

short 16 bits

int 32 bits

long 64 bits

float 32 bits

double 64 bits

11Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Operators
+, -, *, /, and %

5 / 2 yields an integer 2.

5.0 / 2 yields a double value 2.5

5 % 2 yields 1 (the remainder of the division)

12Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Remainder Operator
The % symbol is the remainder operator

Suppose you know January 1, 2005 is
Saturday, you can find that the day for February
1, 2005 is Tuesday using the following
expression:

 Saturday is the 6th day in a week

A week has 7 days

January has 31 days

The 2nd day in a week is Tuesday
(6 + 31) % 7 is 2

3

13Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

NOTE
Calculations involving floating-point numbers are
approximated because these numbers are not stored
with complete accuracy. For example,

System.out.println(1 - 0.1 - 0.1 - 0.1 - 0.1 - 0.1);

displays 0.5000000000000001, not 0.5, and

System.out.println(1.0 - 0.9);

displays 0.09999999999999998, not 0.1. Integers are
stored precisely. Therefore, calculations with integers
yield a precise integer result.

14Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Number Literals
A literal is a constant value that appears directly
in the program. For example, 34, 1,000,000, and
5.0 are literals in the following statements:

int i = 34;
long x = 1000000;
double d = 5.0;

15Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Integer Literals
An integer literal can be assigned to an integer variable

as long as it can fit into the variable.
A compilation error would occur if the literal were too

large for the variable to hold. For example, the statement
byte b = 1000 would cause a compilation error, because
1000 cannot be stored in a variable of the byte type.

An integer literal is assumed to be of the int type, whose
value is between -231 (-2147483648) to 231–1
(2147483647).

To denote an integer literal of the long type, append it
with the letter L or l. L is preferred because l (lowercase L)
can easily be confused with 1 (the digit one).

16Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Floating-Point Literals
Floating-point literals are written with a decimal point.

By default, a floating-point literal is treated as a double
type value.

For example, 5.0 is considered a double value, not a float
value.

You can make a number a float by appending the letter f
or F, and make a number a double by appending the letter
d or D.

For example, you can use 100.2f or 100.2F for a float
number, and 100.2d or 100.2D for a double number.

17Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Scientific Notation
Floating-point literals can also be specified in
scientific notation, for example, 1.23456e+2,
same as 1.23456e2, is equivalent to 123.456, and
1.23456e-2 is equivalent to 0.0123456.

E (or e) represents an exponent and it can be
either in lowercase or uppercase.

18Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Arithmetic Expressions

)94(9))(5(10
5
43

y
x

xx
cbayx +

++
++−

−
+

is translated to

(3+4*x)/5 – 10*(y-5)*(a+b+c)/x + 9*(4/x + (9+x)/y)

4

19Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Shortcut Assignment Operators
Operator Example Equivalent

+= i+=8 i = i+8

-= f-=8.0 f = f-8.0

= i=8 i = i*8

/= i/=8 i = i/8

%= i%=8 i = i%8

20Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Increment and
Decrement Operators

Operator Name Description
++var preincrement ++var increments var by 1 and evaluates

to the new value in var after the increment.
var++ postincrement var++ evaluates to the original value in var

and increments var by 1.
--var predecrement --var decrements var by 1 and evaluates to

the new value in var after the decrement.
var-- postdecrement var-- evaluates to the original value in var

and decrements var by 1.

21Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Increment and
Decrement Operators, cont.

int i = 10;
int newNum = 10 * i++; int newNum = 10 * i;

i = i + 1;

Sa me effect as

int i = 10;
int newNum = 10 * (++i); i = i + 1;

int newNum = 10 * i;

Same effect as

22Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Increment and
Decrement Operators, cont.

Using increment and decrement operators makes
expressions short, but it also makes them complex and
difficult to read. Avoid using these operators in expressions
that modify multiple variables, or the same variable for
multiple times such as this: int k = ++i + i.

23Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Assignment Expressions and
Assignment Statements

Prior to Java 2, all the expressions can be used as
statements. Since Java 2, only the following types of
expressions can be statements:
variable op= expression; // Where op is +, -, *, /, or %
++variable;
variable++;
--variable;
variable--;

24Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Numeric Type Conversion

Consider the following statements:

byte i = 100;

long k = i * 3 + 4;
double d = i * 3.1 + k / 2;

5

25Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Conversion Rules
When performing a binary operation involving two
operands of different types, Java automatically converts
the operand based on the following rules:

1. If one of the operands is double, the other is
converted into double.
2. Otherwise, if one of the operands is float, the other is
converted into float.
3. Otherwise, if one of the operands is long, the other is
converted into long.
4. Otherwise, both operands are converted into int.

26Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Type Casting

Implicit casting
double d = 3; (type widening)

Explicit casting
int i = (int)3.0; (type narrowing)
int i = (int)3.9; (Fraction part
is truncated)

What is wrong? int x = 5 / 2.0;

27Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Character Data Type
char letter = 'A'; (ASCII)
char numChar = '4'; (ASCII)

char letter = '\u0041'; (Unicode)
char numChar = '\u0034'; (Unicode)

Four hexadecimal digits.

NOTE: The increment and decrement operators can also be used
on char variables to get the next or preceding Unicode character.
For example, the following statements display character b.

char ch = 'a';
System.out.println(++ch);

28Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Unicode Format
Java characters use Unicode, a 16-bit encoding scheme
established by the Unicode Consortium to support the
interchange, processing, and display of written texts in the
world’s diverse languages. Unicode takes two bytes,
preceded by \u, expressed in four hexadecimal numbers
that run from '\u0000' to '\uFFFF'. So, Unicode can
represent 65535 + 1 characters.

Unicode \u03b1 \u03b2 \u03b3 for three Greek
letters

29Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Escape Sequences for Special Characters
Description Escape Sequence Unicode

Backspace \b \u0008

Tab \t \u0009

Linefeed \n \u000A

Carriage return \r \u000D

Backslash \\ \u005C

Single Quote \' \u0027

Double Quote \" \u0022

30Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Appendix B: ASCII Character Set
ASCII Character Set is a subset of the Unicode from \u0000 to \u007f

6

31Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

ASCII Character Set, cont.
ASCII Character Set is a subset of the Unicode from \u0000 to \u007f

32Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Casting between char and
Numeric Types

int i = 'a'; // Same as int i = (int)'a';

char c = 97; // Same as char c = (char)97;

33Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

The boolean Type and Operators
Often in a program you need to compare two
values, such as whether i is greater than j. Java
provides six comparison operators (also known
as relational operators) in Table 2.5 that can be
used to compare two values. The result of the
comparison is a Boolean value: true or false.

boolean b = (1 > 2);

34Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Comparison Operators
Operator Name

< less than

<= less than or equal to

> greater than

>= greater than or equal to

== equal to

!= not equal to

35Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Boolean Operators
Operator Name

! not

&& and

|| or

^ exclusive or

36Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Truth Table for Operator !

 p !p

true false

false true

 Example

!(1 > 2) is true, because (1 > 2) is false.

!(1 > 0) is false, because (1 > 0) is true.

7

37Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Truth Table for Operator &&

 p1 p2 p1 && p2

false false false

false true false

true false false

true true true

 Example

(3 > 2) && (5 >= 5) is true, because (3 >
2) and (5 >= 5) are both true.

(3 > 2) && (5 > 5) is false, because (5 >
5) is false.

38Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Truth Table for Operator ||

 p1 p2 p1 || p2

false false false

false true true

true false true

true true true

 Example

(2 > 3) || (5 > 5) is false, because (2 > 3)
and (5 > 5) are both false.

(3 > 2) || (5 > 5) is true, because (3 > 2)
is true.

39Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Truth Table for Operator ^

 p1 p2 p1 ^ p2

false false false

false true true

true false true

true true false

 Example

(2 > 3) ^ (5 > 1) is true, because (2 > 3)
is false and (5 > 1) is true.

(3 > 2) ^ (5 > 1) is false, because both (3
> 2) and (5 > 1) are true.

40Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Examples
System.out.println("Is " + num + " divisible by 2 and 3? " +

((num % 2 == 0) && (num % 3 == 0)));

System.out.println("Is " + num + " divisible by 2 or 3? " +

((num % 2 == 0) || (num % 3 == 0)));

System.out.println("Is " + num +

" divisible by 2 or 3, but not both? " +

((num % 2 == 0) ^ (num % 3 == 0)));

41Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Leap Year?
A year is a leap year if it is divisible by 4 but not by
100 or if it is divisible by 400. The source code of
the program is given below.

boolean isLeapYear =

((year % 4 == 0) && (year % 100 != 0)) ||

(year % 400 == 0);

42Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

The & and | Operators

&&: conditional AND operator
&: unconditional AND operator
||: conditional OR operator
|: unconditional OR operator

exp1 && exp2
(1 < x) && (x < 100)

(1 < x) & (x < 100)

8

43Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

The & and | Operators
If x is 1, what is x after this
expression?

(x > 1) & (x++ < 10)

If x is 1, what is x after this
expression?

(1 > x) && (1 > x++)

How about (1 == x) | (10 > x++)?
(1 == x) || (10 > x++)?

44Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Operator Precedence
How to evaluate 3 + 4 * 4 > 5 * (4 + 3) – 1?

45Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Operator Precedence
var++, var--

+, - (Unary plus and minus), ++var,--var
(type) Casting
! (Not)

*, /, % (Multiplication, division, and remainder)
+, - (Binary addition and subtraction)
<, <=, >, >= (Comparison)
==, !=; (Equality)
& (Unconditional AND)
^ (Exclusive OR)
| (Unconditional OR)
&& (Conditional AND) Short-circuit AND
|| (Conditional OR) Short-circuit OR

=, +=, -=, *=, /=, %= (Assignment operator)

46Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Operator Precedence and Associativity

The expression in the parentheses is evaluated first.
(Parentheses can be nested, in which case the expression
in the inner parentheses is executed first.) When
evaluating an expression without parentheses, the
operators are applied according to the precedence rule and
the associativity rule.

If operators with the same precedence are next to each
other, their associativity determines the order of
evaluation. All binary operators except assignment
operators are left-associative.

47Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Operator Associativity
When two operators with the same precedence
are evaluated, the associativity of the operators
determines the order of evaluation. All binary
operators except assignment operators are left-
associative.
a – b + c – d is equivalent to ((a – b) + c) – d
Assignment operators are right-associative.
Therefore, the expression
a = b += c = 5 is equivalent to a = (b += (c = 5))

48Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Example
Applying the operator precedence and associativity rule,
the expression 3 + 4 * 4 > 5 * (4 + 3) - 1 is evaluated as
follows:

3 + 4 * 4 > 5 * (4 + 3) - 1

3 + 4 * 4 > 5 * 7 – 1

3 + 16 > 5 * 7 – 1

3 + 16 > 35 – 1

19 > 35 – 1

19 > 34

false

 (1) inside parentheses first

 (2) multiplication

 (3) multiplication

 (4) addition

 (5) subtraction

 (6) greater than

9

49Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Operand Evaluation Order
The precedence and associativity rules
specify the order of the operators, but do not
specify the order in which the operands of a
binary operator are evaluated. Operands are
evaluated from left to right in Java.
The left-hand operand of a binary operator is
evaluated before any part of the right-hand
operand is evaluated.

50Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Operand Evaluation Order, cont.
If no operands have side effects that change the value
of a variable, the order of operand evaluation is
irrelevant. Interesting cases arise when operands do
have a side effect. For example, x becomes 1 in the
following code, because a is evaluated to 0 before
++a is evaluated to 1.

int a = 0;
int x = a + (++a);

But x becomes 2 in the following code, because ++a
is evaluated to 1, then a is evaluated to 1.

int a = 0;
int x = ++a + a;

51Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Rule of Evaluating an Expression
· Rule 1: Evaluate whatever subexpressions you can
possibly evaluate from left to right.
·
Rule 2: The operators are applied according to their

precedence, as shown in Table 2.11.
·

Rule 3: The associativity rule applies for two
operators next to each other with the same precedence.

52Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Rule of Evaluating an Expression
· Applying the rule, the expression 3 + 4 * 4 > 5 * (4 + 3)
- 1 is evaluated as follows:

3 + 4 * 4 > 5 * (4 + 3) - 1

3 + 16 > 5 * (4 + 3) - 1

19 > 5 * (4 + 3) - 1

19 > 5 * 7 - 1

19 > 35 – 1

19 > 34

false

 (1) 4 * 4 is the first subexpression that can
be evaluated from left.

 (2) 3 + 16 is evaluated now.

 (3) 4 + 3 is now the leftmost subexpression
that should be evaluated.

 (4) 5 * 7 is evaluated now.

 (5) 35 – 1 is evaluated now.

 (6) 19 > 34 is evaluated now.

53Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

The String Type
The char type only represents one character. To represent a string
of characters, use the data type called String. For example,

String message = "Welcome to Java";

String is actually a predefined class in the Java library just like the
System class and JOptionPane class. The String type is not a
primitive type. It is known as a reference type. Any Java class can
be used as a reference type for a variable. Reference data types
will be thoroughly discussed in Chapter 6, “Classes and Objects.”
For the time being, you just need to know how to declare a String
variable, how to assign a string to the variable, and how to
concatenate strings.

54Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

String Concatenation
// Three strings are concatenated
String message = "Welcome " + "to " + "Java";

// String Chapter is concatenated with number 2
String s = "Chapter" + 2; // s becomes Chapter2

// String Supplement is concatenated with character B
String s1 = "Supplement" + 'B'; // s becomes
SupplementB

10

55Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Obtaining Input
This book provides three ways of obtaining input.

1. Using JOptionPane input dialogs (§2.14)
2. Using the JDK 1.5 Scanner class (Supplement T)
3. Using the MyInput class (§2.16)

56Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Converting Strings to Integers
The input returned from the input dialog box is a string. If
you enter a numeric value such as 123, it returns “123”.
To obtain the input as a number, you have to convert a
string into a number.

To convert a string into an int value, you can use the
static parseInt method in the Integer class as follows:

int intValue = Integer.parseInt(intString);

where intString is a numeric string such as “123”.

57Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Converting Strings to Doubles
To convert a string into a double value, you can use the
static parseDouble method in the Double class as follows:

double doubleValue =Double.parseDouble(doubleString);

where doubleString is a numeric string such as “123.45”.

58Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Example 2.3
Computing Loan Payments

ComputeLoan Run

This program lets the user enter the interest
rate, number of years, and loan amount and
computes monthly payment and total
payment.

12)1(
11 ×+

−

×

numOfYearserestRatemonthlyInt

erestRatemonthlyIntloanAmount

59Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Example 2.4 Monetary Units

This program lets the user enter the amount in
decimal representing dollars and cents and output
a report listing the monetary equivalent in single
dollars, quarters, dimes, nickels, and pennies.
Your program should report maximum number of
dollars, then the maximum number of quarters,
and so on, in this order.

ComputeChange Run

60Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Example 2.5
Displaying Current Time

Write a program that displays current time in GMT in the
format hour:minute:second such as 1:45:19.

The currentTimeMillis method in the System class returns
the current time in milliseconds since the midnight, January
1, 1970 GMT. (1970 was the year when the Unix operating
system was formally introduced.) You can use this method
to obtain the current time, and then compute the current
second, minute, and hour as follows.

ShowCurrentTime Run

11

61Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Getting Input Using Scanner
1. Create a Scanner object
Scanner scanner = new Scanner(System.in);

2. Use the methods next(), nextByte(), nextShort(),
nextInt(), nextLong(), nextFloat(), nextDouble(), or
nextBoolean() to obtain to a string, byte, short, int, long,
float, double, or boolean value. For example,

System.out.print("Enter a double value: ");
Scanner scanner = new Scanner(System.in);
double d = scanner.nextDouble();

TestScanner Run

Optional
Supplement T

62Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Formatting Output
Use the new JDK 1.5 printf statement.

System.out.printf(format, item);

Where format is a string that may consist of substrings and
format specifiers. A format specifier specifies how an item
should be displayed. An item may be a numeric value,
character, boolean value, or a string. Each specifier begins
with a percent sign.

JDK 1.5
Feature

63Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Frequently-Used SpecifiersJDK 1.5
Feature

Specifier Output Example

%b a boolean value true or false

%c a character 'a'

%d a decimal integer 200

%f a floating-point number 45.460000

%e a number in standard scientific notation 4.556000e+01

%s a string "Java is cool"

int count = 5;

double amount = 45.56;

System.out.printf("count is %d and amount is %f", count, amount);

display count is 5 and amount is 45.560000

items

64Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Programming Style and
Documentation

Appropriate Comments
Naming Conventions
Proper Indentation and Spacing Lines
Block Styles

65Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Appropriate Comments

Include a summary at the beginning of the
program to explain what the program does, its key
features, its supporting data structures, and any
unique techniques it uses.

Include your name, class section, instructor, date,
and a brief description at the beginning of the
program.

66Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Naming Conventions
Choose meaningful and descriptive names.
Variables and method names:
– Use lowercase. If the name consists of several

words, concatenate all in one, use lowercase
for the first word, and capitalize the first letter
of each subsequent word in the name. For
example, the variables radius and area, and
the method computeArea.

12

67Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Naming Conventions, cont.
Class names:
– Capitalize the first letter of each word in

the name. For example, the class name
ComputeArea.

Constants:
– Capitalize all letters in constants, and use

underscores to connect words. For
example, the constant PI and
MAX_VALUE

68Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Proper Indentation and Spacing

Indentation
– Indent two spaces.

Spacing
– Use blank line to separate segments of the code.

69Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Block Styles
Use end-of-line style for braces.

public class Test
{
 public static void main(String[] args)
 {
 System.out.println("Block Styles");
 }
}

public class Test {
 public static void main(String[] args) {

 System.out.println("Block Styles");
 }
}

End-of-line
style

Next-line
style

70Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Programming Errors
Syntax Errors
– Detected by the compiler

Runtime Errors
– Causes the program to abort

Logic Errors
– Produces incorrect result

71Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Syntax Errors
public class ShowSyntaxErrors {

public static void main(String[] args) {
i = 30;
System.out.println(i + 4);

}
}

72Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Runtime Errors
public class ShowRuntimeErrors {

public static void main(String[] args) {
int i = 1 / 0;

}
}

13

73Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Logic Errors
public class ShowLogicErrors {

// Determine if a number is between 1 and 100 inclusively

public static void main(String[] args) {

// Prompt the user to enter a number
String input = JOptionPane.showInputDialog(null,

"Please enter an integer:",

"ShowLogicErrors", JOptionPane.QUESTION_MESSAGE);

int number = Integer.parseInt(input);

// Display the result

System.out.println("The number is between 1 and 100, " +

"inclusively? " + ((1 < number) && (number < 100)));

System.exit(0);

}

}

74Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Debugging
Logic errors are called bugs.
The process of finding and correcting errors is

called debugging.
Debugging could be done through a combination

of methods to narrow down to the part of the
program where the bug is located.

– Hand-tracing
– Insert print statements in order to show the values of

the variables or the execution flow of the program.
– Use debugger

75Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All
rights reserved. 0-13-148952-6

Debugger
Debugger is a program that facilitates debugging.
You can use a debugger to

Execute a single statement at a time.
Trace into or stepping over a method.
Set breakpoints.
Display variables.
Display call stack.
Modify variables.

